

Software Documentation

BioCASE rights management and access control component

Dipl.-Inform. Lutz Suhrbier

1 PREFACE .. 4
2 SYSTEM ARCHITECTURE ... 4

2.1 APPLICATION INTERFACE SCENARIO ... 6
2.2 CLIENT API SCENARIO.. 7
2.3 COMPONENTS ... 8

2.3.1 BioCASE Provider... 8
2.3.2 Browser ... 8
2.3.3 Trust Center .. 9

2.3.3.1 Public Key Infrastructure .. 9
2.3.4 RoleManager... 10
2.3.5 Policy Enforcement Point.. 10
2.3.6 Client API.. 11

3 SYSTEM REQUIREMENTS... 12
3.1 JAVA PLATFORM... 12

3.1.1 OpenSSL.. 12
3.1.2 Cygwin .. 12
3.1.3 Ant ... 13
3.1.4 BioCASE Provider... 13
3.1.5 Web Browser ... 13

4 USER DOCUMENTATION... 13
4.1 CONFIGURATION (GENERAL) .. 13

4.1.1 RoleManager... 14
4.1.2 PolicyEnforcementPoint.. 14

4.1.2.1 Context Path .. 15
4.1.2.2 Listener.. 15
4.1.2.3 Handler.. 16
4.1.2.4 Example... 17
4.1.2.5 Policy Management... 18

4.1.2.5.1 PolicyManager ... 18
4.1.2.5.2 PolicyFinder ... 18
4.1.2.5.3 FileFilter... 19
4.1.2.5.4 Example ... 19

4.2 PUBLIC KEY INFRASTRUCTURE... 19
4.2.1 Create the directory structure ... 20
4.2.2 Adopt openssl.cnf .. 20
4.2.3 Generate the Private key of the RootCA: .. 21
4.2.4 Generate the RootCA's certificate... 21
4.2.5 Verify the certificate .. 21
4.2.6 Copy the certificate to the place configured within openssl.cnf .. 21
4.2.7 Link the RootCA's certificate within the directory structure configured in openssl.cnf 21
4.2.8 Generate the ServerCA and UserCA and generate the Private Key for the Server CA 22
4.2.9 Generate the certificate request (to be signed from the RootCA later) ... 22
4.2.10 Sign the certificate request ... 22
4.2.11 Copy the ServerCA certificate to the place configured within openssl.cnf............................... 23
4.2.12 Repeat the last steps to create the UserCA... 23
4.2.13 Create Browser compatible certificate files ... 23
4.2.14 Generation of a server certificate... 23
4.2.15 Generation of a user certificate.. 24
4.2.16 Export keys and certificates to the PKCS#12 format.. 24
4.2.17 Configuration of the JSSE trust manager... 24

4.3 ROLEMANAGER.. 25
4.3.1 Policy management ... 25

4.3.1.1 Domains .. 26
4.3.1.2 Identifier .. 26
4.3.1.3 RoleAssignmentPolicy(Set)... 27
4.3.1.4 RolePolicySet .. 27
4.3.1.5 PermissionPolicySet.. 27
4.3.1.6 PermissionPolicy ... 28

4.3.2 Commands... 28
4.3.2.1 Add (-a, --add)... 28

4.3.2.1.1 Add users to a role.. 28
4.3.2.1.1.1 Examples.. 28

4.3.2.1.2 Add PermissionPolicies to a role.. 29
4.3.2.1.2.1 Examples: .. 29

4.3.2.1.3 Add Permissions to a PermissionPolicy ... 29
4.3.2.1.3.1 Examples: .. 29

4.3.2.1.4 Add Conditions to Permissions .. 30
4.3.2.1.4.1 Examples: .. 30

4.3.2.2 Remove (-r, --remove)... 30
4.3.2.2.1 Remove users from a role... 30

4.3.2.2.1.1 Examples: .. 31
4.3.2.2.2 Remove PermissionPolicies from a role... 31

4.3.2.2.2.1 Examples: .. 31
4.3.2.2.3 Remove Permissions from a PermissionPolicy .. 31

4.3.2.2.3.1 Examples: .. 31
4.3.2.2.4 Remove Conditions from a Permission.. 32

4.3.2.2.4.1 Examples: .. 32
4.3.2.2.5 Remove roles completely ... 32

4.3.2.2.5.1 Example: .. 32
4.3.2.2.6 Remove domains completely ... 32

4.3.2.2.6.1 Example: .. 32
4.3.2.3 List (-l, --list) ... 32

4.3.2.3.1.1 Examples.. 32
4.3.2.4 Help (-h, --help)... 33

4.3.2.4.1.1 Example: .. 33
4.3.3 Options .. 33

4.3.3.1 Deny (-d, --Deny) .. 33
4.3.3.2 Domain (-D, --Domain <label list>).. 34
4.3.3.3 User (-U,--User <cert file list>)... 34
4.3.3.4 targetAction (-z,--targetAction <datatype- matchfunc[value]>).. 34
4.3.3.5 targetResource (-y,--targetResource <datatype- matchfunc[value]>).. 34
4.3.3.6 Role (-R,--Role <label list>)... 34
4.3.3.7 PermissionPolicy (-P,--PermissionPolicy <label list>).. 34
4.3.3.8 -p,--Permission <list of labels> ... 34
4.3.3.9 -C,--Condition <list of labels> .. 34
4.3.3.10 --policyBaseDir ... 34

4.3.4 Target syntax scheme description ... 34
4.3.4.1 Example... 35

4.3.5 Condition syntax scheme description .. 35
4.3.5.1 Example... 35

4.4 POLICY ENFORCEMENT POINT .. 35
4.5 BIOCASE INTEGRATION... 36

4.5.1 Policy Definition Rules.. 36
4.5.1.1 Request processing .. 36
4.5.1.2 Response processing.. 37
4.5.1.3 Response signing... 38
4.5.1.4 Combining algorithms deny-overrides vs. permit-overrides.. 39

4.6 CLIENT API .. 39
4.6.1 Configuration .. 40
4.6.2 Code Example ... 41

5 INSTALLATION .. 42
5.1 BROWSER CERTIFICATE INSTALLATION.. 42

5.1.1 Firefox... 42
5.1.2 Internet Explorer ... 43

5.2 OPENSSL.. 43
5.3 BIOCASE PROVIDER .. 43
5.4 SOFTWARE DISTRIBUTION... 43
5.5 EXAMPLE SCENARIO ... 44

6 DEVELOPER DOCUMENTATION... 44
7 REFERENCES .. 47

1 Preface
This document contains the software documentation for the implementation of the BioCASE
rights management and access control component. Mainly based on the standards eXtensible
Access Control Markup Language (XACML) Version 2.0 [MOS05] and XML-Signature
Syntax and Processing (XML-DSIG) the implemented software components provide an
application level firewall working on the BioCASE protocol. The components realise task like
user authentication, authorisation, role based access control, access rights management,
content signing and a simple client API. The software is completely implemented in Java.
The following sections describe the software implementation. First, an overview of the
general system architecture is given. Next, the system requirements are presented followed by
the user documentation. The latter comprises the configuration and usage of the different
software components and its integration within the BioCASE scenario. Then, the installation
procedure is described including the example scenario. Finally, a reference to the developer
documentation is given.

2 System Architecture
The starting point of the system architecture represents the current BioCASE scenario. Within
this scenario, the client uses a common web browser to control a BioCASE application
located at the provider's web server (see figure 1). This application communicates with the
PyWrapper whenever access to the provider's Unit Database is required. Usually, the
PyWrapper also runs on this web server.

figure 1 Overview primary BioCASE protocol

To realise authentication and access rights management, an additional access control layer
was introduced, filtering the communication between the client and the application. So, the
filter acts like an, so called, application level firewall. This means, it scans the client-provider
communication for relevant BioCASE protocol messages and evaluates correspondent access
control policies defined according to the RBAC Profile of XACML v2.0 [A05].

figure 2 Overview system components

This may result in blocking client BioCASE requests completely or filtering out XML
elements of the content of the provider's BioCASE response on a permitted client request.
Any permitted request is redirected unchanged to the relating BioCASE provider host.
Further, the implementation of the access control layer founds on several components sub
dividable to handle the two main tasks authentication and access rights management (see
figure 2). First, there is the Trust Center component responsible for the management of the

Public Key Infrastructure (PKI). The main task of the provider’s Trust Center is the issuance
of certificates required for the mutual authentication between clients and servers. Second, the
Policy Enforcement Point (PEP) realises the application level firewall functionality and
enforces a set of XACML based role bases access control policies defined by the provider. To
support system administrators managing these policies, the Role Manager component was
introduced.
For security reasons, it is very important to emphasize, that it must be assured, that the
provider's web server can not be reached from the internet or other unauthorised networks
directly. The only access point to outside clients should be the Policy Enforcement Point.
Otherwise, any of the measures to implement authentication and access control mechanisms
may be bypassed easily by communicating with the provider application directly.
The implemented components are described in more detail in the following sections.
Meanwhile, two scenarios for the access control layer may come into operation, the
application interface scenario, and the client API scenario. Both are enlightened in the next
two sections.

2.1 Application interface scenario
This next paragraph describe the application interface scenario. The two figures figure 1 and
figure 3 illustrate the components interactions of the original BioCASE protocol and the
access control enhanced system architecture described below.

figure 3 Overview access control enhanced BioCASE protocol

Within the original scenario (see figure 1) the user selects the URL of the provider's
application web interface in his browser. Clicking on an interactive element, such as a button,
he sends an Http-request to the web server, which is handled by the application interface.

Whenever the request requires access to the provider's unit database, the interface creates an
adequate BioCASE request and sends this request to the PyWrapper. The PyWrapper queries
the unit database, builds the BioCASE response and sends this response back to the
application interface. The application interface formats a web page from this response and
returns the data to the client.
The starting point within the access control enhanced system architecture remains the same
(see figure 3), except that the URL of the provider begins with "https". Furthermore, the client
must import his certificate on his web browser. Otherwise, the PEP assigns to him the guest
role, defining minimal access rights to the system only. In this scenario, the PEP, located at
the provider's access control layer, receives the client request. Then, the PEP authenticates the
client verifying its certificate got from the SSL handshake with the client browser. If the client
can not be authenticated, then the PEP also assigns to him the guest role. When the client is
authenticated, the PEP requests the Role Enablement Authority (REA) subcomponent, to
evaluate all roles enabled for this client within the Role Assignment policies defined by the
provider's system administrators. Then, the PEP adds this list of client roles and the internal
URL of the PEP as parameters to the original client request and forwards it to the provider's
application interface. The application interface proceeds the request as described for the
primary BioCASE scenario. If the interface needs to access the PyWrapper, then the interface
uses the URL received as request parameter from the PEP before. So, the Interface connects
to the PEP and sends the generated BioCASE request to him. When no database request is
required, then the application interface responds the request from the PEP as described for the
primary BioCASE scenario and the PEP returns this response to the client.
When the PEP receives a request for the PyWrapper, its PEP subcomponent evaluates this
request using the role list evaluated before (appended to the request from the interface as
additional Http-request parameter). The Policy Decision Point (PDP) evaluates the BioCASE
request against the defined XACML Role Permission policies for each of the evaluated roles.
If the request is permitted for one of these roles, the PDP returns a permit decision to the PEP.
If the request is denied, then the PEP creates a BioCASE error response and returns this
response to the application interface.
Otherwise, the PEP forwards the BioCASE request unchanged to the PyWrapper. Then, the
PyWrapper's BioCASE response is evaluated against the defined XACML Role Permission
policies also. If the PDP denies the access to any of the sub elements or element attributes of
the content of the BioCASE response, then the PDP also eliminates this element (and all its
attributes and sub elements) or the attribute from the content element of the BioCASE
response respectively.
Finally, the BioCASE response filtered by the PDP is returned to the provider's application
interface, which proceeds the response as normal. The application interface returns its final
Http-response to the PEP returning this final response directly to the client.

2.2 Client API scenario
Unlike the application interface scenario, there are only a few changes using the client API.
The main change is that there is no interaction between the PEP and the application interface.
The PEP receives BioCASE requests through the client API and delivers the permitted
requests directly to the PyWrapper of the original BioCASE scenario. Also, the PEP receives
BioCASE responses directly from the PyWrapper and delivers them to the client API.
The major task of the client API is the provision of a simple, but easy to use communication
interface, which may be used by any other client application or application interface. The
location of the client API should not be at the provider hosting the PyWrapper. Because in
addition, the client API now supports the verification signed content document received in
BioCASE responses from the PEP. The result of this verification will be reported through the
addition of some Diagnostic element to the original BioCASE response. You will agree with,

because it makes no sense if the provider would verify its own signature on behalf of the
client user. The default application interface scenario does currently not support signature
verification.
The second feature not supported within the default application interface, is that the client API
supports some kind of single-sign-on mechanism e.g. for web portals realising their own
client authentification. Assumed, that the BioCASE provider trusts this web portal, it accepts
the identity of all clients authenticated by that trusted application. Therefore, a special role –
called trustedClient - may be assigned to this client application in the PEP’s XACML policies
permitting proxying of user identities by passing the client identity in form of an X.509
certificate to the PEP.

2.3 Components
The following sections describe the components presented in the overview in more detail,
such as the

• BioCASE Provider

• Public Key Infrastructure

• Web Browser

• RoleManager

• Policy Enforcement Point

• Client API

2.3.1 BioCASE Provider
To support the access control enhancements, the original BioCASE scenario [BIO05] has
been subject to some minor modifications already suggested above. The enhanced scenario
should be supported in the provider software starting with version 2.31. This version has been
implemented for the computer demonstration at the TDWG 2005 meeting in September 2005.
The following paragraphs describe the required modifications.
First, the provider software must store the role list sent from the PEP included since the initial
request forwarded to the application interface (see clause 4.5). The role list is sent within the
Http-parameter role. The provider interface must include this parameter to any PyWrapper
request (redirected to the PEP). This indicates to the PEP, that the request was initiated from
the PyWrapper and intended for the PyWrapper.
Next, for the redirection of PyWrapper-requests initiated by the provider’s application
interface, the PEP uses the already defined Http-parameter wrapperURL for any Http-POST
requests or url for any Http-GET requests respectively. For that, the PEP must be configured
with its own (PyWrapper)-URL, such it can be connected from the internal network, i.e. the
web server hosting the provider's application interface (see clause 4.1.2.3).

2.3.2 Browser
Within the BioCASE scenario, the web browser usually serves as graphical user interface
enabling the client to interact with the provider software. To be suitable for the enhanced
access control environment, the client's web browser must support the Https-protocol (e.g.
Mozilla Firefox [MOZ05], Microsoft Internet Explorer). Furthermore, the user must install its
own X509 certificate and, to verify the authenticity of the provider host, the certificate of the
provider. Both certificates should be available from the provider’s Trust Center.

2.3.3 Trust Center
The main task of the provider’s Trust Center is reliable authenticity management. Therefore,
the Trust Center ensures the authenticity of entities by generating key pairs and issuing
certificates for these entities. With the issuance of certificates (see clause 4.2), it guarantees
that the owner of the corresponding private key is the entity described within the certificate's
attributes. The Trust Center must also ensure to hand out the related private key to the correct
entity. An entity may be a person, like a system user, but may also be a system, such as the
provider's Policy Enforcement Point.
Usually, a Trust Center provides further information services allowing to query for certificates
of given entities or to provide information about the current state of a certificate (valid,
revoked, and expired) [SS04]. But in the current scenario, the Trust Center just serves as a
secure user or server registry on behalf of the provider. So, it creates key pairs for registered
clients and server hosts of this provider and issues the corresponding certificates. Then it
ensures to hand out the key pairs and certificates to their correct owners, i.e. the registered
system user or the server administrator respectively. Finally, the provider has to publish the
relevant server certificates, such as to make possible to authenticate the provider servers to the
client. For that, the client just has to install its private key and certificate, and the server
certificates within its security enabled web browser (e.g. Firefox, Internet Explorer).
This project provides a basic Trust Center solution based on the OpenSSL project. The
implemented Public Infrastructure should be suitable not only for single providers, but for
providers belonging to the same security domain or hosting multiple provider databases also.
The solution should be extensible to more complex infrastructures. Very useful information
about the construction of Public Key Infrastructures gives [DFN00]. Anyway, the following
section shortly describes the provided Public Key Infrastructure.

2.3.3.1 Public Key Infrastructure
The Public Key Infrastructure bases on the X.509 standard [IET05] and realises the mutual
authentication between client and provider within the Policy Enforcement Point of the Access
Control Layer using the Secure Socket Layer (SSL) protocol. Every X.509 PKI founds on a
Root Certification Authority (RootCA), which must be at the same time the most trustworthy
and most secured entity in the whole security infrastructure. The RootCA provides certificates
for Registration Authorities (RA) thus enabled to issue certificates for users or servers. We
established two RAs: a ServerCA, issuing certificates for provider servers and a UserCA
issuing certificates for users. Both issue certificates on request of the provider administrators,
when a new provider host shall be setup, or the provider's system administrators, when they
register a new client. The following figure illustrates the hierarchy of the demonstration
scenario, where keys and certificates for one provider and three clients were issued. As stated
above, this infrastructure may be easily extended to support several provider or providing
hosts and the addition of an arbitrary amount of users. The definition of roles and the
assignment of users to these roles bases on the issued X509 user certificates and is supported
by the RoleManager tool.

figure 4 Public Key Infrastructure

2.3.4 RoleManager
The RoleManager is a small command line application permitting the

• definition of roles

• assignment of users to roles

• definition of permission policies

• assignment of permission policies to roles

• definition of permissions

• assignment of permissions to permission policies

• assignment of conditions to permissions

The RoleManager supports the provider's system administrators to manage and configure an
adequate XACML policy hierarchy according to the XACML Role Based Access (RBAC)
profile [A05]. The detailed commands and parameters are described in clause 4.3.2. The
policies defined with the RoleManager are stored as XML files in a special configuration
directory on the file system (see clause 4.1.1). Configured with the same policy directory
location, the Policy Enforcement Point (PEP) and its subcomponents Role Enablement
Authority (REA) and Policy Decision Point (PDP) evaluates the enabled roles or access rights
for a given action and resource from these policy files respectively.

2.3.5 Policy Enforcement Point
As its name suggests, the Policy Enforcement Point (PEP) represents the system entity
enforcing authentication and access control on behalf of a given provider. Thereby, the PEP
becomes the only access point to the provider's application interface and/or PyWrapper
respectively.
To realise the authentication, the PEP accepts all incoming requests on behalf of the provider
using the SSL-protocol (https). For the realisation of the Role Based Access Control, the PEP
involves two subcomponents:

• Role Enablement Authority (REA)

• Policy Decision Point (PDP)

The REA's task is to evaluate a list of enabled roles for a given client identified by its X.509
certificate. The REA is a special instance of an XACML PDP, focusing on Role Assignment

Polices only (see clause 4.3.1) and specifying user-to-role assignments. To process the request
the REA requires a X.509 certificate. The REA evaluates all roles specified within the Role
Assignment Policies and evaluates for each role, if this role is enabled for the client
authenticated by the given X.509 certificate. Finally, the REA returns the resulting list to the
requester, i.e. the PEP.
If the authentication of the client fails, then the PEP creates a role set containing the
predefined role guest only.
The PDP's task is to evaluate access rights for a given set of roles, on a given resource with a
given action. Therefore, the PDP just focuses on Role Policy Sets, referencing the Permission
Policies defined for a given role (see clause 4.3.1). Permission Policies include of a set of
Permissions specifying resources enabled for a given action. Thus, the same policies can be
referenced from different roles.
Within the BioCASE environment, we have to distinguish request and response policies.
Within request policies, resources are defined as paths to concepts, which may be subject of a
scan or search request. Unlike request policies, resources are defined as paths to elements or
attributes within the XML document included in the content sub element of a BioCASE
response. Actions are defined on each of the specified BioCASE protocol method, such as
capabilities, scan and search. To allow the definition of permissions for requests and
responses, the suffixes "-request" or "-response" has to be appended to the method names
within Permissions. So, the PDP needs at least a role, a resource and the related BioCASE
request method to evaluate if access to the given request or a response content element may
be granted or not.
After a successful client authentication, the PEP gets the client's certificate and queries the
REA for the set of enabled roles. When receiving a request designated to the PyWrapper, the
PEP analyses this BioCASE request and generates an evaluation request to the PDP with the
role set evaluated by the REA as subject, the requested concept(s) as resource(s) and the
request method as action. If the PDP permits the request, the PEP forwards the request to the
PyWrapper. After receiving the BioCASE response from the PyWrapper, the PEP examines
the resulting content document and creates an evaluation request to the PDP with the role set
as subject and the response method as action for each element or attribute path in this content
document. If the PDP does not permit the access to any of the content's sub elements, then the
PEP eliminates this element and all its attributes and sub elements from the BioCASE
response. If access is denied for an attribute, the PEP eliminates this attribute only.
More details about the integration of the PEP in the BioCASE protocol have been described in
the clause 4.5).

2.3.6 Client API
The main objective of the client API is the communication management with the Policy
Enforcement Point (PEP) of a BioCASE provider. The API may be used to provide security
related facilities like authentication or signature verification within any third party BioCASE
application interface.
The client API was implemented in Java, where the main interface was realised in the class
nbi.xmlsec.PEPClient. It can be used to send and receive requests and responses of the
BioCASE protocol. Further, it supports SSL authentication against the PEP and the signature
verification of possibly signed content documents within BioCASE responses. The result of
the verification process is reported within the Diagnostics of the original BioCASE response.
Therefore, the newly create code attribute “SECURITY”is used.
Finally, the classes of the package nbi.xmlsec.biocase.protocol (e.g. Request, Response)
provide an easy to use interface to create and evaluate BioCASE request and responses
respectively.

3 System Requirements
The following sections include an overview of the system requirements needed to install and
run the software. Currently the following third party or open source components are
indispensable to run the system:

• Java OS

• OpenSSL

• Ant

• bash-shell

The Java section also contains a list of open software projects, which libraries have been used
to implement the system.

3.1 Java Platform
The software implementation builds up on the Java 2 Platform, Standard Edition (J2SE)
Version 1.4.2 [SUN05]. The current release number is 10. Furthermore, the Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 1.4.2 are
required, enabling to use third party JCE provider on the Java Platform.
The Java Platform is available for all popular Windows, Linux and Solaris operating systems.
Using the Java Platform, the software implementation uses the following open source third
party software components:
Bouncy Castle JCE provider [TAU05]
Sun's XACML Implementation [SUN04a]
Jetty Java Http Servlet Server [MOR05]
Apache Jakarta Subproject Commons
components:
- CLI
- Collection
- Configuration
- IO
- Lang

[THE05a]

Log4j project ([APA05])
JSR-105 XML Digital Signature APIs [SUN04b]
See the installation guide (see clause 5) for further information.

3.1.1 OpenSSL
The OpenSSL Project [THE05b] offers an Open Source implementation of the Secure Sockets
Layer (SSL)/Transport Layer Security (TLS) protocol and a general purpose cryptography
library. OpenSSL is used in this system to provide the Trust Center functionality such as the
generation of Public Key pairs and X.509 certificates.
Binary distributions of OpenSSL are included in most popular Linux distributions and for
Microsoft Windows. During the implementation of this system, the OpenSSL package
included in Cygwin (see clause 3.1.2) was used to build up a test PKI. In the course of the
development, some a basic OpenSSL configuration has been developed, supporting the
creation of the PKI (see 4.2).

3.1.2 Cygwin
Cygwin is a Linux-like environment for Windows providing a collection of useful Linux/Unix
tools like the bash-shell or the OpenSSL package [RED05]. The software distribution contains
some useful bash-scripts to install the software and run the PEP and RoleManager application.

Thus, the software should run under the Windows Operating System, it could be time-saving
to start working with Cygwin first.

3.1.3 Ant
The Apache Ant Project [THE05c] provides a Java-based build tool. Ant is used within this
project to

• compile a distribution zip-file

• compile the distribution's source code

• generate the JavaDoc-based developer documentation from the distribution's source files

• install the software from the unzipped distribution

It is quite comfortable to use ant from the eclipse platform IDE [ECL05]. Anyway, refer to
the project pages for current installation instructions.

3.1.4 BioCASE Provider
Of course, to see the system working, a BioCASE provider is needed. The system should
cooperate with the BioCASE provider version 2.3.1 [BIO05]. This is the version used for the
computer demonstration at the TDWG 2005 Meeting in September 2005. If the version is not
available on the web page, please contact the BioCASE developers for support.

3.1.5 Web Browser
The web browser is required to drive the provider's application interface and manage the
Public Key Pair of the client and the certificates of the provider host running the PEP during
the authentication. The web browser of choice must support the https protocol, X.509-
certificates and PKCS#12 key pair files. The software has been developed using the Mozilla
Firefox Browser version 1.0x [MOZ05] and has been tested with the Microsoft Internet
Explorer version 5.x or higher included in Windows XP.

4 User Documentation
This section of the document contains the user documentation of the implemented system
components. It shall support system administrators to configure the software and define
XACML policies. The documentation starts with a description of the configuration issues of
the implemented components. Then it explains the policy management structures and shows
how to set up the PKI using OpenSSL. Next it provides a user manual of the Role Manager
component and concludes with a detailed description of the BioCASE system integration of
the PEP.

4.1 Configuration (general)
The configuration of the RoleManager, the Policy Enforcement Point and the Role
Enablement Authority is build up on the subproject Commons Configuration of the Apache
Jakarta Project (http://jakarta.apache.org/commons/configuration/). The configuration consists
of the file "config.xml" specifying the configuration objects to load. We decided to use an
XML based configuration object, which is stored in an XML file to be configured within the
attribute "fileName" of the element "xml" in the config.xml.
<?xml version="1.0" encoding="ISO-8859-1" ?>
<configuration>
 <xml fileName="PEPconfig.xml"/>
</configuration>

Currently, there is not DTD or XML schema to describe the format, neither from the
Commons Configuration project, nor from us. So, the relevant parameters will be explained in
the configuration sections of the correspondent component. (see clauses 4.1.1, 4.1.2 and
4.1.2.5).
Generally, the root element is ignored, so the configuration of a component starts with its
corresponding element name such as RoleManager, PolicyEnforcementPoint or
RoleEnablementAuthority.

4.1.1 RoleManager
The configuration largely represents the class architecture of the RoleManager's software
architecture. The aim of the RoleManager's configuration framework is to keep the
configuration of the RoleManager's components as flexible as possible. So, any of the
particular components implementing classes may be interchangeable whenever wanted.
The RoleManager element has two attributes:

RoleManager
Attribute Function
class The class of the RoleManager implementation to

be loaded.

defaultDomain(required) The default domain specifies the domain to be
used, when the command line interface is invoked
without the -D option.

Furthermore, the RoleManager element must contain a PolicyManager element described in
clause 4.1.2.5.1.
As an example, look at the example RoleManager configurations delivered with this
distribution (see also clause 5.5).
<RoleManager class="nbi.xmlsec.xacml.profile.rbac.RoleManager"
defaultDomain="biocase" >
 <PolicyManager class="nbi.xmlsec.xacml.profile.rbac.PolicyManager"
policyBaseDir="./policies">
 <PolicyFinder>
 <PolicyFinderModule
class="nbi.xmlsec.xacml.profile.rbac.finder.RBACPolicyFinderModule"
policyBaseDir="./policies" >
 <SuffixFileFilter>.xml</SuffixFileFilter >
 </PolicyFinderModule>
 </PolicyFinder>
 </PolicyManager>
</RoleManager>
If the specification of any class attribute is omitted, the implementation loads the default
classes of this distribution. Anyway, for comfort reason you should define the default domain
and the policyBaseDir within the PolicyManager element as default values. Otherwise, you
will be forced to state the options -D and --policyBaseDir in every command invoked
(see clause 4.3.2).

4.1.2 PolicyEnforcementPoint
The configuration largely represents the configurable objects of the PolicyEnforcementPoint's
software architecture. The aim of this configuration framework is to keep the configuration of
the components as flexible as possible. So, any of the particular components implementing
classes may be interchangeable whenever wanted.
The PEP element has one optional attribute:

/PEP

Attribute Function
class The class of the PEP implementation to load

Furthermore, the RoleManager element must contain a Filter element. The Filter implements
the filtering of incoming requests and responses. Currently, this filter builds up on the
HttpServer implementation of the Jetty Project [MOR05].

/PEP/Filter
Attribute Function
class The class of the PEP implementation to load

Thus, Jetty's software architecture determines the items to be configured, such as

• Context path

• Listener

• Handler

The context path simply specifies the path on the HttpServer, where the
PolicyEnforcementPoint is attached. The Listener waits for connections on a specific IP-
address and port and needs SSL parameters to be specified. Finally, the handler processes the
incoming Http- requests and responses and therefore sets up the Role Enablement Authority
and Policy Decision Point used to grant access or not.

4.1.2.1 Context Path
The context path simply specifies the path on the HttpServer, where the
PolicyEnforcementPoint to be attached. If the context path is set to "\", then the PEP is
accessible on the root level of the server.
The ContextPath element has the following attribute:

/PEP/Filter/Context
Attribute Function
path The path of the PEP on the server

4.1.2.2 Listener
The Listener awaits connections to the PEP. To do that, a host name and port number must be
configured. The default scenario provides the SSL protocol for the authentication of users and
to protect the connection against tampering. Therefore, the Listener contains a sub element
SSL, where specific parameters such as a key store, containing the private key of the PEP, its
type and passwords for the key and key store may be specified.
The Listener element has the following attributes:

/PEP/Filter/Listener
Attribute Function
class The class of the Listener implementation to

load

host The PEP's host name

port The PEP's port number

The Listener's SSL sub element has the following attributes:
/PEP/Filter/Listener/SSL

Attribute Function
needClientAuth Client must be authenticated

wantClientAuth Client authentication is not obligatory

Furthermore, the SSL element has the sub elements KeyStore and Key. The element KeyStore
defines the key store, where the private key of the PEP is stored into. It has the following
attributes:

/PEP/Filter/Listener/SSL/KeyStore
Attribute Function
file The key store’s file path

type The type of the key store (e.g. PKCS12)

password The password needed to access the key store

The element Key only specifies the password for the PEP's private key.
/PEP/Filter/Listener/SSL/Key

Attribute Function
password The password needed to access the PEP's private

key

Finally, the Listener's sub element ThreadPool allows to define the minimum and maximum
amount of threads started by the Listener to serve requests. This can be configured with the
following attributes:

/PEP/Filter/Listener/ThreadPool
Attribute Function
minThreads The minimum number of threads to be started

maxThreads The maximum number of threads to be started

4.1.2.3 Handler
The handler proxies incoming Http-requests and responses and act's like an application level
firewall by blocking requests and filtering the content of responses returned from the
BioCASE provider.

/PEP/Filter/Handler
Attribute Function
class The class of the Handler implementation to

load

domain The domain specifies the domain to be used in
PDP requests.

To communicate with the provider, the handler needs the URLs of the provider's application
interface and database wrapper. This may be done within the sub elements Proxy and
Wrapper.
The Handler's sub element Proxy has the following attributes:

/PEP/Filter/Handler/Proxy
Attribute Function
url The url of the provider's application interface

The Handler's sub element Wrapper has the following attributes:

/PEP/Filter/Handler/Wrapper
Attribute Function

url The url of the provider's database wrapper

To enable the PEP handler for signing BioCASE responses, the handler needs access to a
private key. Analogous to the Listener’s SSL configuration (see clause 4.1.2.2), this will be
done using the subelements KeyStore and Key. So, the same or different keys may be used for
authentication and signing.

/PEP/Filter/Handler/KeyStore
Attribute Function
file The key store’s file path

type The type of the key store (e.g. PKCS12)

password The password needed to access the key store

The element Key only specifies the password for the PEP's private key.
/PEP/Filter/Handler/Key

Attribute Function
password The password needed to access the PEP's private

key

The sub elements RoleEnablementAuthority and PolicyDecisionPoint are largely configured
by the specification of their classes and the configuration of their policy managers. Thus, both
consist of the following attribute:

/PEP/Filter/Handler/RoleEnablementAuthority and PDP
Attribute Function
class The class of the RoleEnablementAuthority or

PolicyDecisionPoint implementation to load
respectively

Both include the sub element PolicyManager to configure the policies to be included within
the policy evaluation processes. The configuration of the PolicyManager describes clause
4.1.2.5.1.

4.1.2.4 Example
As an example for the complete configurations of the PEP component, look at the PEP’s
example configuration part delivered with this distribution (see also clause 5.5).
<PolicyEnforcementPoint class="nbi.xmlsec.PEP">
 <Filter class="org.mortbay.http.HttpServer">
 <Context path="/" />
 <Listener class="org.mortbay.http.SslListener" host="localhost"
port="443">
 <SSL needClientAuth="false" wantClientAuth="true">
 <KeyStore file="./keystore.p12" type="PKCS12" password="provider"
/>
 <Key password="provider" />
 </SSL>
 <ThreadPool minThreads="5" maxThreads="100" />
 </Listener>
 <Handler class="nbi.xmlsec.PEPHandler" domain="biocase">
 <KeyStore file="./keystore.p12" type="PKCS12" password="provider" />

 <Key alias="BioCASE Provider 2048 Bit Zertifikat" password="provider"
/> <Proxy url="http://localhost:8080" />
 <Wrapper url="https://localhost" />
 <RoleEnablementAuthority
class="nbi.xmlsec.xacml.profile.rbac.RoleEnablementAuthority">
 <PolicyManager class="nbi.xmlsec.xacml.profile.rbac.PolicyManager"
policyBaseDir="./policies" >
 <PolicyFinder >
 <PolicyFinderModule
class="nbi.xmlsec.xacml.profile.rbac.finder.RBACPolicyFinderModule" policyB
aseDir="./policies" >
 <SuffixFileFilter >.xml</SuffixFileFilter >
 </PolicyFinderModule>
 </PolicyFinder >
 </PolicyManager>
 </RoleEnablementAuthority>
 <PDP class="nbi.xmlsec.xacml.profile.rbac.RBACPDP">
 <PolicyManager class="nbi.xmlsec.xacml.profile.rbac.PolicyManager"
policyBaseDir="./policies" >
 <PolicyFinder >
 <PolicyFinderModule
class="nbi.xmlsec.xacml.profile.rbac.finder.RBACPolicyFinderModule"
policyBaseDir="./policies" >
 <SuffixFileFilter >.xml</SuffixFileFilter >
 </PolicyFinderModule>
 </PolicyFinder >
 </PolicyManager>
 </PDP>
 </Handler>
 </Filter>
</PolicyEnforcementPoint>

4.1.2.5 Policy Management
The policy management is processed by the component PolicyManager, which must be
configured to identify the policies to be included within the policy evaluation processes. This
is done by the subcomponents PolicyFinder and FileFilter. The following sections describe
their configurations.

4.1.2.5.1 PolicyManager
The PolicyManager's objective is to keep track of all defined policy types and may be
described the following attributes:

PolicyManager/
Attribute Function
class The class of the PolicyManager implementation

to load

policyBaseDir The path to the base directory, where the
policy file structure is located

.
Next, the PolicyManager element must contain a PolicyFinder element.

4.1.2.5.2 PolicyFinder
The PolicyFinder is used by the SunXACML library to retrieve the policies to be evaluated.
For that, the policy finder has to specify at least one PolicyFinderModule, which does that
work for him. Each policy finder module is configured through a PolicyFinderModule
element and has the following attributes:

PolicyManager/PolicyFinder/PolicyFinderModule
Attribute Function
Class The class of the PolicyFinder module

implementation to load

policyBaseDir The path to the base directory, where the
policy file structure is located

The policy base directory defined here replaces any previously configured, higher-levelled
policyBaseDir definition (e.g. within the PolicyManager's configuration.
Additionally, each PolicyFinderModule may contain several FileFilter elements, filtering out
the files to be identified as policy files.

4.1.2.5.3 FileFilter
A FileFilter filters out the files to be identified as policy files. Currently, only a
SuffixFileFilter is implemented, but this feature may be extended in future versions.
The value of a SuffixFileFilter determines the suffix of matching filenames, such as ".xml".

PolicyManager/PolicyFinder/PolicyFinderModule/(Suffix)FileFilter
Attribute Function

4.1.2.5.4 Example
As an example, look at the example PolicyManager configurations delivered with this
distribution (see also clause 5.5).
<PolicyManager class="nbi.xmlsec.xacml.profile.rbac.PolicyManager"
policyBaseDir="./policies" >
 <PolicyFinder>
 <PolicyFinderModule
class="nbi.xmlsec.xacml.profile.rbac.finder.RBACPolicyFinderModule"
policyBaseDir="./policies" >
 <SuffixFileFilter >.xml</SuffixFileFilter >
 </PolicyFinderModule>
 </PolicyFinder >
</PolicyManager>

4.2 Public Key infrastructure
All client identification issues base on an X509-Public Key Infrastructure (PKI). The
following sections describe how to build up a PKI consisting of a RootCA and the RA's
ServerCA to register servers and UserCA to register users (see clause 2.3.3.1). Furthermore,
the generation of server and user X.509 certificates is explained and the prepare key and
certificate files to be imported by browsers.

The software distribution contains a subdirectory CA, where the OpenSSL configuration file
openssl.cnf should be found. This file (and this how to too) assumes, that CA is the current
working directory where OpenSSL is called. All preconfigurations in openssl.cnf are defined
relative to that directory. In particular, the distribution should have created the directory
structure. If not, the following directory structure should be created. The examples below are
created using the Cygwin bash-shell.

4.2.1 Create the directory structure
Create the subdirectories RootCA, ServerCA and UserCA within the CA directory (command
mkdir). Copy the openssl.cnf file into the CA directory (command cp). Then, the directory
listing should look like this:
$ ls -la CA
total 8
drwxr-xr-x+ 5 lusu None 0 Mar 21 11:07 .
drwx------+ 7 lusu None 0 Mar 21 10:20 ..
drwxr-xr-x+ 6 lusu None 0 Mar 21 11:06 RootCA
drwxr-xr-x+ 6 lusu None 0 Mar 21 11:07 ServerCA
drwxr-xr-x+ 6 lusu None 0 Mar 21 11:07 UserCA
-rwxr-xr-x 1 lusu None 7730 Mar 21 11:03 openssl.cnf
In each subdirectory (RootCA, ServerCA and UserCA) create the subdirectories certs, crl,
newcerts and private. Additionally, create the file index.txt and serial using the following
commands:
$ touch ...CA/index.txt
$ echo "01" >...CA/serial
Now, the content of each subdirectory should look as follows
$ ls -la CA/RootCA
total 1
drwxr-xr-x+ 6 lusu None 0 Mar 21 11:06 .
drwxr-xr-x+ 5 lusu None 0 Mar 21 11:07 ..
drwxr-xr-x+ 2 lusu None 0 Mar 21 10:48 certs
drwxr-xr-x+ 2 lusu None 0 Mar 21 10:48 crl
-rw-r--r-- 1 lusu None 0 Mar 21 11:06 index.txt
drwxr-xr-x+ 2 lusu None 0 Mar 21 10:48 newcerts
drwxr-xr-x+ 2 lusu None 0 Mar 21 11:17 private
-rw-r--r-- 1 lusu None 3 Mar 21 11:04 serial
Finally, is it possible to create own random files for each CA creating the
file .rand in each subdirectory private of each of CA subdirectories
(RootCA, ServerCA and UserCA). If it is not present, OpenSSL will create
own random numbers during key generation. When done, each private
subdirectory should look like this:
$ ls -la CA/RootCA/private
total 3
drwxr-xr-x+ 2 lusu None 0 Mar 21 11:17 .
drwxr-xr-x+ 6 lusu None 0 Mar 21 11:06 ..
-rw------- 1 lusu None 1024 Mar 21 10:47 .rand

4.2.2 Adopt openssl.cnf
There are only a few points where modifications should be taken without being confident with
the configuration of the OpenSSL software. For other modifications, please refer to the
official OpenSSL documentation [THE05b] or [DFN00].
Set the $HOME variable within openssl.cnf or the CA_HOME environment variable (export
CA_HOME /some_dir using bash) to an absolute path, if OpenSSL is usually called from
another working directory than CA.
Set the default_ca variable in the section [ca] to e.g. UserCA, if the keys and certificates for
the ServerCA and UserCA are created, and only user key pairs and certificates shall be
created.
Adopt the default values proposed during the generation of a certificate's X.500 Distinguished
Name, so that they are suitable for your organisation. This may be done within the section
[req distinguished name] changing the entries with the suffix _default.

4.2.3 Generate the Private key of the RootCA:
The following command creates a 2048 bit RSA Private Key for the RootCA. OpenSSL
requests to enter a pass phrase for the key. Remember that pass phrase, but keep that secret
very safe!
$ openssl genrsa -aes256 -out RootCA/private/RootCA.key.pem -rand
RootCA/private/.rand 2048
1024 semi-random bytes loaded
Generating RSA private key, 2048 bit long modulus
...................+++
.....................+++
e is 65537 (0x10001)
Enter pass phrase for RootCA/private/RootCA.key.pem: (your_pw)
Verifying - Enter pass phrase for RootCA/private/RootCA.key.pem: (your_pw)

4.2.4 Generate the RootCA's certificate
The following command creates a self-signed certificate of the RootCA, valid for five years
and with the serial number 0. Therefore, OpenSSL requests to enter the pass phrase of the
RootCA's private key. The proposed values for the Distinguished Name may be modified.
Anyway, a unique Common Name must be entered.
$ openssl req -config ./openssl.cnf -set_serial 0 -new -x509 -days 1827 -
key RootCA/private/RootCA.
key.pem -out RootCA/RootCA.cert.pem
Enter pass phrase for RootCA/private/RootCA.key.pem:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [DE]:
State or Province Name (full name) [Berlin]:
Locality Name (eg, city) [Berlin]:
Organization Name (eg, company) [FU-Berlin]:
Organizational Unit Name (eg, section) [NBI]:
Common Name (eg, YOUR name) :RootCA NBI
Email Address :

4.2.5 Verify the certificate
$ openssl x509 -in RootCA/RootCA.cert.pem -text

4.2.6 Copy the certificate to the place configured within openssl.cnf
The location of the certificate is indicated within the section [RootCA] in the variable
certificate, the location of the private key in the variable private_key:
certificate = $dir/cacert.pem
private_key = $dir/private/cakey.pem
Now, copy both files to the right location.
$ cp RootCA/RootCA.cert.pem RootCA/cacert.pem
$ cp RootCA/private/RootCA.key.pem RootCA/private/cakey.pem

4.2.7 Link the RootCA's certificate within the directory structure
configured in openssl.cnf

The certificate must be copied in the RootCA's subdirectory certs, renamed with the serial
number and linked with its hash value:

$ cp RootCA/RootCA.cert.pem RootCA/certs/00.pem
$ cd RootCA/certs/
$ ln -s 00.pem `openssl x509 -hash -noout -in 00.pem`.0
Now, the certificate of the RootCA is ready for working. Continue creating the Registration
Authorities for servers und users, ServerCA and UserCA.

4.2.8 Generate the ServerCA and UserCA and generate the Private Key
for the Server CA

The generation of a key pair is analogous to the RootCA. You will also be requested to enter a
pass phrase. Remember it and keep it secret!
$ openssl genrsa -aes256 -out ServerCA/private/ServerCA.key.pem -rand
/usr/lib/ssl/ServerCA/private/.rand 2048

4.2.9 Generate the certificate request (to be signed from the RootCA
later)

The following command creates a certificate request for the ServerCA to be signed from the
RootCA later. Therefore, OpenSSL requests to enter the pass phrase of the ServerCA's
private key. The proposed values for the Distinguished Name may be modified. Anyway, a
unique Common Name must be entered.
$ openssl req -config ./openssl.cnf -new -key
ServerCA/private/ServerCA.key.pem -out ServerCA/ServerCA.req.pem
Enter pass phrase for ServerCA/private/ServerCA.key.pem: (your_pw)
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:DE
State or Province Name (full name) [Some-State]:Berlin
Locality Name (eg, city) :Berlin
Organization Name (eg, company) [Internet Widgits Pty Ltd]:FU-Berlin
Organizational Unit Name (eg, section) :NBI
Common Name (eg, YOUR name) :ServerCA NBI
Email Address :

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password :server
An optional company name :

4.2.10 Sign the certificate request
Using the RootCA's private key, the following command signs the Server CA's
certificate request and generates the ServerCA's certificate.

$ openssl ca -name RootCA -config ./openssl.cnf -in
ServerCA/ServerCA.req.pem -out ServerCA/ServerCA.cert.pem
Using configuration from ./openssl.cnf
Enter pass phrase for ./RootCA/private/cakey.pem: (your_pw)
Check that the request matches the signature
Signature ok
The Subject's Distinguished Name is as follows
countryName :PRINTABLE:'DE'
stateOrProvinceName :PRINTABLE:'Berlin'
localityName :PRINTABLE:'Berlin'
organizationName :PRINTABLE:'FU-Berlin'
organizationalUnitName:PRINTABLE:'NBI'
commonName :PRINTABLE:'ServerCA NBI'
Certificate is to be certified until Mar 21 11:03:17 2006 GMT (365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

4.2.11 Copy the ServerCA certificate to the place configured within
openssl.cnf

First, the newly created certificate was stored in the newcerts subdirectory of the RootCA.
From there, it must be moved to the subdirectory certs and linked with its own hash value:
$mv RootCA/newcerts/01.pem RootCA/certs/
$cd RootCA/certs/
$ln -s 01.pem `openssl x509 -in 01.pem -hash -noout`.0

4.2.12 Repeat the last steps to create the UserCA
$ openssl genrsa -aes256 -out UserCA/private/UserCA.key.pem -rand
UserCA/private/.rand 2048 (pw user)
$ openssl req -config ./openssl.cnf -new -key UserCA/private/UserCA.key.pem
-out UserCA/UserCA.req.pem
$ openssl ca -name RootCA -config ./openssl.cnf -in UserCA/UserCA.req.pem -
out UserCA/UserCA.cert.pem
$ mv RootCA/newcerts/02.pem RootCA/certs/
$ cd RootCA/certs/
$ ln -s 02.pem `openssl x509 -in 02.pem -hash -noout`.0

4.2.13 Create Browser compatible certificate files
To import these certificates in common browsers, all characters within the certificate files
created above between the lines (inclusive)
-----BEGIN CERTIFICATE-----
and
-----END CERTIFICATE-----
must be stored into a file with the suffix ".crt". Use a text editor and create the files
RootCA.crt, ServerCA.crt and UserCA.crt. These files may also be published (together with
the fingerprints) online, so that users can download and use them.

4.2.14 Generation of a server certificate
Now, the ServerCA is prepared to generate server certificates. Server certificates do not
require pass phrases, because the have to use their Private Key without human interaction.
This can be achieved omitting the OpenSSL pass phrase encryption algorithm parameter
when generating the Private Key. Server certificates will be signed from the ServerCA with
the following command sequence:

$ openssl genrsa -out ServerCA/provider.key.pem -rand
ServerCA/private/.rand 2048
$ openssl req -config ./openssl.cnf -new -key ServerCA/provider.key.pem -
out ServerCA/provider.req.pem
$ openssl ca -config ./openssl.cnf -name ServerCA -in
ServerCA/provider.req.pem -out ServerCA/provider.cert.pem
$ mv ServerCA/newcerts/01.pem ServerCA/certs/
$ cd ServerCA/certs
$ ln -s 01.pem `openssl x509 -hash -noout -in 01.pem`.0
To import these certificates in a browser, it must be transformed in the
X.509(crt) file format as described above.

4.2.15 Generation of a user certificate
Unlike server certificates, the generation of user certificates requires pass phrases to protect
the user's private key against unauthorised usage. Thus, use the following command sequence
to generate a user key pair and certificate. User certificates will be signed be the UserCA.
$ openssl genrsa -aes256 -out UserCA/client.key.pem -rand
UserCA/private/.rand 2048
$ openssl req -config ./openssl.cnf -new -key UserCA/client.key.pem -out
UserCA/client.req.pem
$ openssl ca -config ./openssl.cnf -name UserCA -in UserCA/client.req.pem -
out UserCA/client.cert.pem
$ mv UserCA/newcerts/01.pem UserCA/certs/
$ cd UserCA/certs
$ ln -s 01.pem `openssl x509 -noout -hash -in 01.pem`.0
To import these certificates in a browser, it must be transformed in the X.509 (.crt) file format
as described above.

4.2.16 Export keys and certificates to the PKCS#12 format
The following command exports the server keys and certificate to the PKCS#12 format and
name it BioCASE Provider 2048 Bit Zertifikat.
$ openssl pkcs12 -export -inkey ServerCA/provider.key.pem -in
ServerCA/provider.cert.pem -name "BioCASE Provider 2048 Bit Zertifikat" -
out ServerCA/provider.p12
The following command exports the server keys and certificate to the PKCS#12 format and
name it BioCASE Client 2048 Bit Zertifikat.
$ openssl pkcs12 -export -inkey UserCA/client.key.pem -in
UserCA/client.cert.pem -name "BioCASE Client 2048 Bit Zertifikat" -out
UserCA/client.p12

4.2.17 Configuration of the JSSE trust manager
The Java Secure Socket Extension (JSSE) trust manager determines whether the
authentication credentials presented by the client should be trusted, when a client connects to
the PEP. This is done using a so called trust store which stores all CA-certificates required, to
build a trustable certification chain to the presented client certificate. The trust store equals to
a Java Key store, which can be created using the Java keytool. Regarding the PKI developed
above, the certificates of the RootCA and the UserCA must be added to that trust store.
To create such a trust store use the following commands:
$ keytool -import -trustcacert -alias RootCA -file Keys/RootCA/RootCA.crt
-keystore jssecacert
$ keytool -import -trustcacert -alias UserCA -file Keys/UserCA/UserCA.crt
-keystore jssecacert
You will be prompted to set a password. Press enter to omit that password. If you decide to
set a password, the password must be configured using the Java system property
javax.net.ssl.trustStorePassword (java -Djavax.net.ssl.trustStorePassword=your_pw)

The trust store file jssecacert must be copied to the lib/security subdirectory of your Java
Runtime Environment (see 4.2.17). If you like to define another location, this must be
configured using the Java system property javax.net.ssl.trustStore (java -
Djavax.net.ssl.trustStore=path_to_truststore).

4.3 RoleManager
The RoleManager component supports the organisation of roles and policies. It offers a
command line interface providing several commands to process the most important role and
policy management tasks (see clause 2.3.4).
The RoleManager organises the role management policies according to the RBAC Profile of
XACML v2.0 [A05]. Additionally, it introduces domains specifying policy sets for different
environments or other purposes.
The following sections elucidate the policy management basics and the commands and
options of the RoleManager’s command line interface. For configuration issues refer to clause
4.1.1. The RoleManager may be started using the distribution’s bash-script RoleManager or
running the Java class nbi.xmlsec.xacml.profile.rbac.RoleManager. The commands and
parameters of this command line interface describes clause 4.3.2).

4.3.1 Policy management
The policies managed by the RoleManager are stored in a file system structure according to
the policy structure described in the RBAC Profile of XACML v2.0 [=13 - Anderson 2005
Core and hierarchica...=]. That is, every policy (set) described there will be stored in a XML-
file within a subdirectory named after its policy type. The policy file name corresponds to the
label of its policy (set) appending the file suffix ".xml". The RBAC Profile of XACML v2.0
specifies the following policy types:

• RoleAssignmentPolicySet

• RoleAssignmentPolicy

• RolePolicySet

• PermissionPolicySet

• PermissionPolicy

In addition, we introduced a simple domain concept, allowing the composition of policies for
specific objectives like different providers or databases. This domain feature is provided in
the file system reserving one directory for each domain. These directories are labelled after
the name of the domain and include the subdirectory structure stated above.
All these domain directories must be subdirectories of a so called policy base directory. This
directory comprises the access control configuration of the whole system used by the
RoleManager, the Policy Enforcement Point and the Role Enablement Authority. As a matter
of course, all these files must be protected by system administrators against unauthorised
access. The following figure shows a possible directory hierarchy including two domains (see
figure 5).

figure 5 Directory structure for RBAC XACML policies

4.3.1.1 Domains
The main idea behind the domain concept is to provide a measure to differentiate role sets for
different application or policy domain specifics. So, e.g. a server hosting different providers
or databases may start a PEP instance for each provider or database hosted. Configuring the
PEP to use the policies defined within a domain for each provider eases the maintenance of
the policies. Nevertheless, you must specify at least one domain, even if you are serving just
one domain.

4.3.1.2 Identifier
The XACML standard requires that every type of policy element must have an identifier
[MOS05]. Furthermore, it requires that no two policies have the same identifier, which may
be achieved following a predefined URN or URI scheme. Therefore, we extended this
requirement to XACML Rule elements also, resulting in an identical naming convention for
all relevant policy elements. Thus, we defined a scheme for our RBAC policies and rules as
follows:

• urn:<domain_label>:<policy_type>:<policy_label>.

The accepted values for <policy_type> are

• RoleAssignmentPolicySet

• RoleAssignmentPolicy

• RolePolicySet

• PermissionPolicySet

• PermissionPolicy.

The values for <policy_label> and <domain_label> describe the name of the policy or
denote the name of the domain, which the policy element belongs to.
The current implementation maps this naming scheme onto the file system. For that, all ":" of
the naming scheme are replaced by the path separator of the underlying operating system. The
policy file name is built concatenating the value of <policy_label> and the XML file suffix
".xml". The result is a relative file path unique within the system's policy base directory.
Example:
The identifier "urn:domain_1:RolePolicySet:role_1" is mapped to the
relative file path "domain_1/RolePolicySet/role_1".
This way, all policy types can be unambiguously stored and retrieved from the file system.
Note, that because domain and policy labels must be representable in the file system, the

syntax for labels is restricted to the Namespace Identifier Syntax as defined in RFC 2141 [=14
- Moats 1997 URN Syntax...=].

4.3.1.3 RoleAssignmentPolicy(Set)
As defined in [A05], a RoleAssignmentPolicy or RoleAssignmentPolicySet determines which
users are enabled to which roles and under which conditions. These policies are used be the
Role Enablement Authority to determine whether a subject - identified by an X509 certificate
- has a particular role attribute value. The RoleManager organises role assignments as
follows:
The RoleAssignmentPolicySet includes RoleAssignmentPolicies using PolicyReferences to
support combining role assignments from different sub roles or the construction of
hierarchical role sets. Currently, the RoleManager only supports referencing one
RoleAssignmentPolicy per RoleAssignmentPolicySet. A RoleAssignmentPolicy determines
the real user to role assignments according to [A05]. The assignments consist of multiple
subjects, identified by its X.500 Distinguished Name, a role_value resource storing the role
label and the predefined action enableRole. See the next table for detailed XACML values
and data types.
Element Value XACML data type
Subject X500 Distinguished Name urn:oasis:names:tc:xacml:1.0:data-type:

x500Name

Resource <domain_label>:role_value:
<role_label>

http://www.w3.org/2001/XMLSchema#anyURI

Action urn:oasis:names:tc:xacml:2.0:
actions:enableRole

http://www.w3.org/2001/XMLSchema#anyURI

The RoleManager supports the following XACML PolicyCombiningAlgorithms for a
RoleAssignmentPolicySet:

• urn:oasis:names:tc:xacml:1.0:policy-combining- algorithm:permit-overrides

The RoleManager supports the following XACML RuleCombiningAlgorithms for a
RoleAssignmentPolicy:

• urn:oasis:names:tc:xacml:1.0:rule-combining- algorithm:permit-overrides

4.3.1.4 RolePolicySet
A RolePolicySet associates users with particular role value attributes to a
PermissionPolicySet. This PermissionPolicySet contains the permissions associated with the
given role. According to [A05], each RolePolicySet references at most one corresponding
PermissionPolicySet. The XACML target limits the applicability of the RolePolicySet to
subjects with the given role value attribute.
The RoleManager supports the following XACML PolicyCombiningAlgorithms for a
RolePolicySet:

• urn:oasis:names:tc:xacml:1.0:rule-combining- algorithm:permit-overrides

4.3.1.5 PermissionPolicySet
A PermissionPolicySet references the PermissionPolicies describing the resources and actions
that subjects with a particular role value attribute are permitted to access. [A05] also specifies
the inheritance of PermissionPolicySets as junior roles. Unfortunately, this is currently not
supported by the RoleManager but may be added in future versions.

The RoleManager supports the following XACML PolicyCombiningAlgorithms for
PermissionPolicySets:

• urn:oasis:names:tc:xacml:1.0:policy- combining- algorithm:permit-overrides

• urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:deny- overrides

4.3.1.6 PermissionPolicy
A PermissionPolicy describes the resources and actions that subjects are permitted to access.
These Permissions are determined by Rules contained in a PermissionPolicy. [A05] also
specifies the addition of further conditions to the application of such permissions.
The RoleManager only supports the following RuleCombiningAlgorithms for a
PermissionPolicy:

• urn:oasis:names:tc:xacml:1.0:rule-combining- algorithm:permit-overrides

• urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides

4.3.2 Commands
The RoleManager offers a command line interface to the user providing several commands
supporting the most important role management task. Currently, the interface implements the
commands add, remove, list and help. Each command may be parameterised by several
options. The following sections explain the available commands in detail.

4.3.2.1 Add (-a, --add)
This command adds or updates policy elements. If necessary, it creates any missing policy
elements needed to process the command. The add command may be used to

• add users to a role

• add permission policies to a role

• add permissions to a permission policy

• add conditions to a permission policy

4.3.2.1.1 Add users to a role
When adding users to a role, this means that an Assignment will be added to a
RoleAssignmentPolicy (Set). Currently, users are represented by their X509 certificates.
Thus, to process the command, the following arguments are needed:

Option Description
-D domain label

-R role label

-U list of X.509 certificate file paths of users to add

If the domain or the RoleAssignmentPolicySet and RoleAssignmentPolicy relying on the
given role are inexistent, they are created.

4.3.2.1.1.1 Examples
The following command adds the user with the X509Certificate stored in
./CA/UserCA/user_1.crt to the role users of the domain domain
-a -D domain -R users -U ./CA/UserCA/user_1.crt
The following command adds the users with the X509Certificates stored in
./CA/UserCA/user_1.crt and ./CA/UserCA/user_2.crt to the role users of the domain domain.

-a -D domain -R users -U ./CA/UserCA/user_1.crt ./CA/UserCA/user_2.crt

4.3.2.1.2 Add PermissionPolicies to a role
When adding PermissionPolicies to a role, this means that a PermissionPolicy will be added
to a PermissionPolicySet. Thus, a PolicyReference to the PermissionPolicy will be added to
the PermissionPolicySet for the given role The command requires the following arguments:

Option Description
-D domain label

-R role label

-P list of PermissionPolicies to add

If the domain or the PermissionPolicySet and RolePolicySet or PermissionPolicy relying on
the given role are inexistent, they are created.

4.3.2.1.2.1 Examples:
The following command adds the PermissionPolicy userperm_1 to the role users of the
domain domain
-a -D domain -R users -P userperm_1
The following command adds the PermissionPolicies userperm_1 and userperm_2 to the role
users of the domain domain.
-a -D domain -R users -P userperm_1 userperm_2

4.3.2.1.3 Add Permissions to a PermissionPolicy
When adding permissions to a PermissionPolicy, this means that the Rules representing the
Permission will be added to the given PermissionPolicy. The command requires the following
arguments:

Option Description
-D domain label

-P PermissionPolicy to update

-p permission label to add

-d Flag setting the permission effect to deny (otherwise permit)

-y list of resources to be added to the permission

-z list of actions to be added to the permission

If the domain, PermissionPolicy or Permission to be updated is inexistent, it was created.
The syntax scheme to define target resources or actions of permissions describes clause 4.3.4.

4.3.2.1.3.1 Examples:
The following command adds the Permission perm_1 which effects to permit to the
PermissionPolicy userperm_1 of the domain domain
-a -D domain -P userperm_1 -p perm_1
The following command adds the Permission perm_1 which effects to deny to the
PermissionPolicy userperm_1 of the domain domain
-a -D domain -P userperm_1 -p perm_1 -d
The following command adds the Permission perm_1 which effects to permit to the
PermissionPolicy userperm_1 of the domain domain and defines that the action must be equal
to the string "action_1".
-a -D domain -P userperm_1 -p perm_1 -z string-equal[action_1]

The following command adds the Permission perm_1 which effects to deny to the
PermissionPolicy userperm_1 of the domain domain and defines that the action must be equal
to the string "action_1" and matches any string resource containing the string "resource"
-a -D domain -P userperm_1 -p perm_1 -d -y string-match[resource] -z
string-equal[action_1]

4.3.2.1.4 Add Conditions to Permissions
When adding a Condition to Permissions, this means that the Rules representing the
Permission are extended by the given condition. The command requires the following
arguments:

Option Description
-D domain label

-P PermissionPolicy to update

-p permission label to update

-C Condition to be added to the permission

If the domain, PermissionPolicy, Permission or Condition to be updated is inexistent, it is
created.
The syntax scheme to define conditions describes clause 4.3.5.

4.3.2.1.4.1 Examples:
The following command adds the Condition integer-less-than[env[limit],10] to the
permission perm_1, which effects to permit the request action of the permission perm_1 only
when the environment attribute limit evals to an integer value less than 10.
-a -D domain -P userperm1 -p permit_1 -C integer-less-than[env[limit],10]

4.3.2.2 Remove (-r, --remove)
This command removes policy elements. The remove command may be used to

• remove users from a role

• remove permission policies from a role

• remove permissions from a permission policy

• remove conditions from a permission

• remove roles completely

• remove domains completely

4.3.2.2.1 Remove users from a role
When removing users from a role, this means that an Assignment will be removed from a
RoleAssignmentPolicy(Set). Currently, users are represented by their X509 certificate. Thus,
to process the command, the following arguments are needed:

Option Description
-D domain label

-R role label

-U list of X.509 certificate file paths of users to remove

This command removes the corresponding Assignments from the given
RoleAssignmentPolicy. If there are no users left, the RoleAssignmentPolicy will not be
deleted!

4.3.2.2.1.1 Examples:
The following command removes the user with the X509Certificate stored in
./CA/UserCA/user_1.crt from the role users of the domain domain
-r -D domain -R users -U ./CA/UserCA/user_1.crt
The following command removes the users with the X509Certificates stored in
./CA/UserCA/user_1.crt .and ./CA/UserCA/user_2.crt from the role users of the domain
domain
-r -D domain -R users -U ./CA/UserCA/user_1.crt ./CA/UserCA/user_2.crt

4.3.2.2.2 Remove PermissionPolicies from a role
When removing PermissionPolicies from a role, this means that a PermissionPolicy will be
removed from a PermissionPolicySet. For that, the PolicyReference to the PermissionPolicy
will be removed from the PermissionPolicySet for the given role. The command requires the
following arguments:

Option Description
-D domain label

-R role label

-P list of PermissionPolicies to remove

If there are no PolicyReferences left, the PermissionPolicySet will not be deleted!

4.3.2.2.2.1 Examples:
The following command removes the PermissionPolicy userperm_1 from the role users of the
domain domain.
-r -D domain -R users -P userperm_1
The following command removes the PermissionPolicies userperm_1 and userperm_2 to the
role users of the domain domain.
-r -D domain -R users -P userperm_1 userperm_2

4.3.2.2.3 Remove Permissions from a PermissionPolicy
When removing permissions from a PermissionPolicy, this means that the Rules representing
the Permission will be removed from the given PermissionPolicy. Furthermore, actions or
resources can be removed from the Permission. The command requires the following
arguments:

Option Description
-D domain label

-P PermissionPolicy to update

-p Permission to remove

-d Flag setting the Permission’s effect to deny (otherwise permit)

-y list of resources to remove from the Permission

-z list of actions to remove from the Permission

For the syntax scheme to define resources or actions for permission see clause 4.3.4.

4.3.2.2.3.1 Examples:
The following command removes the Permission perm_1 from the PermissionPolicy
userperm_1 of the domain domain.
-r -D domain -P userperm_1 -p perm_1
The following command removes the action equalling the string "action_1" from the
Permission perm_1 of the PermissionPolicy userperm_1 of the domain domain.

-r -D domain -P userperm_1 -p perm_1 -z string-equal[action_1]
The following command removes the action equalling the string "action_1" and the resource
matching the string "resource" from the Permission perm_1 of the PermissionPolicy
userperm_1 of the domain domain.
-r -D domain -P userperm_1 -p perm_1 -y string-match[resource] -z string-
equal[action_1]

4.3.2.2.4 Remove Conditions from a Permission
When removing a Condition to Permissions, this means that the Rules representing the
Permission are freed from the given condition. The command requires the following
arguments:

Option Description
-D domain label

-P PermissionPolicy to update

-p permission label to update

-C Condition to be removed from the permission

The syntax scheme to define conditions describes clause 4.3.5.

4.3.2.2.4.1 Examples:
The following command removes the Condition integer-less-than[env[limit],10] from
the permission perm_1.
-r -D domain -P userperm1 -p permit_1 -C integer-less-than[env[limit],10]

4.3.2.2.5 Remove roles completely
This command removes the RoleAssignmentPolicySet, RoleAssignmentPolicy, RolePolicySet
and PermissionPolicySet of the given role. All the related files are deleted from the file
system. The command requires the following arguments:

Option Description
-D domain label

-R List of roles to remove

4.3.2.2.5.1 Example:
The following command removes the role users of the domain domain completely.
-r -D domain -R users

4.3.2.2.6 Remove domains completely
This command removes the given domain completely from the file system. All corresponding
policy files are lost. The command requires the following arguments:

Option Description
-D domain label

4.3.2.2.6.1 Example:
The following command removes the domain domain.
-r -D domain

4.3.2.3 List (-l, --list)
The list command prints defined Roles, Users and Permissions to the screen.

4.3.2.3.1.1 Examples

The following command lists all available domains, roles, users and Permissions.
-l
The following command lists all available roles, users and Permissions labels of the domain
domain to the screen.
-l -D domain
The following command lists all available role labels of the domain domain to the screen.
-l -D domain -R
The following command lists all available PermissionPolicy labels of the domain domain to
the screen.
-l -D domain -P
The following command lists all available Permission labels of the PermissionPolicy
userperm_1 within the domain domain to the screen:
-l -D domain -P userperm_1 -p

4.3.2.4 Help (-h, --help)
The help command prints a short command description of the RoleManager to the screen.

4.3.2.4.1.1 Example:
The following command prints the command description to the screen:
-h

4.3.3 Options
The commands offered by RoleManager need several parameters to operate. These
parameters are given to the RoleManager’s command line using options. See the following
table for supported options.
Name Long Name Arguments Commands
-d

--Deny add permissions,
add permission policies

-D

--Domain <label list> all except help

-U --User <cert file list> add/remove users
-z

--targetAction <datatype-
matchfunc[value]>

add/remove permissions

-y

--targetResource <datatype-
matchfunc[value]>

add/remove permissions

-R --Role <label list> all except help
-P

--PermissionPolicy <label list> add/remove permissions,
add/remove permission
policies

-p

--Permission <label list> add/remove permissions,
add/remove permission
policies

-C --Condition <label list> add/remove conditions
 --policyBaseDir <dir path> all except help

The following sections explain the available options in detail.

4.3.3.1 Deny (-d, --Deny)
Sets Permission’s effect to deny or sets the combining algorithm of a PermissionPolicy or
PermissionPolicySet to urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:deny-
overrides.

4.3.3.2 Domain (-D, --Domain <label list>)
This option specifies at least one domain name for the given command. Multiple domain
parameters are supported for the command remove domains completely only (see clause
4.3.2.2.6). This option overwrites any default setting from the configuration file (see clause
4.1).

4.3.3.3 User (-U,--User <cert file list>)
This option specifies at least one path to an X.509 certificate file.

4.3.3.4 targetAction (-z,--targetAction <datatype- matchfunc[value]>)
This option specifies at least one XACML action target of Permission. The syntax scheme of
the arguments describes clause 4.3.4.

4.3.3.5 targetResource (-y,--targetResource <datatype- matchfunc[value]>)
This option specifies at least one XACML resource target of Permission. The syntax scheme
of the arguments describes clause 4.3.4.

4.3.3.6 Role (-R,--Role <label list>)
This option specifies at least one role value for the given command. Multiple role value
parameters are supported for the command remove roles completely only (see clause
4.3.2.2.4).

4.3.3.7 PermissionPolicy (-P,--PermissionPolicy <label list>)
This option specifies at least one PermissionPolicy for the given command. When adding or
removing permissions (see clauses 4.3.2.1.3, 4.3.2.2.3) only the first label from the list is
evaluated.

4.3.3.8 -p,--Permission <list of labels>
This option specifies at least one Permission for the given command. When adding or
removing target actions or resources (see clauses 4.3.2.1.3, 4.3.2.2.3) only the first label from
the list is evaluated.

4.3.3.9 -C,--Condition <list of labels>
This option specifies at least one Condition for the given command.

4.3.3.10 --policyBaseDir
This option specifies the policy base directory for the given command. This option overwrites
any default setting from the configuration file (see clause 4.1).
Command: all except for help.

4.3.4 Target syntax scheme description
The syntax scheme to define resources or actions for permission is defined as follows:

• datatype-matchfunc[value]

Currently the following data types are supported:

Data Type Description
string declares the value as a string
Anyuri declares the value as a URI

x500Name declares the value as a X500Principal

The datatype may be combined with the following match functions:
Match Function Description
Equal equals the value
Match match the value as regular expression (string and x500Name)

4.3.4.1 Example
To match the string “pattern” within Permission targets uses the following target declaration:

• String-match[pattern]

4.3.5 Condition syntax scheme description
The syntax scheme to define conditions may be seen as an extended target syntax scheme
description described above.

• datatype-matchfunc[attr_type(value1[, value2, ...])]

It introduces an attribute type selector permitting to select the scope of the function (sub for
subject, res for ressource, act for action and env for environment) or to evaluate attribute
values repectively. Currently, only the latter is supported within the PEP’s implementation,
especially to support the evaluation and comparison of environment attributes within
BioCASE protocol request.
It supports multiple function values and values may be represented by function results also.
This becames necessary to support comparison functionality of environment attributes in
permission policies
Currently, it should support all comparison functions defined in the XACML standard
[MOS05] and supported by Sun’s XACML Implementation [SUN04a].
On user request, this scheme may be extended in the future, to replace the current target
syntax scheme for actions and resources. This would be done adding an implementation of the
sub, res and act scope selectors and abandons the current –z and –y parameters to define
actions and resources using the RoleManager.

4.3.5.1 Example
To evaluate the environment attribute limit of the responseFormat element “limit” and to
verify, if it is less than 10, use the following declaration:

• integer-less-than[env[limit],10]

4.4 Policy Enforcement Point
The task of the PEP is to await BioCASE-requests, evaluate the access rights related to the
requesting entity and process the request according to these access rights. The BioCASE-
requests are embedded within the Https-protocol, which uses the SSL authentication protocol
to determine the authenticity of the requesting client. For that, each client must own an X509-
certificate.
The Policy Enforcement Point (PEP) encapsulates two components:

• Role Enablement Authority (REA)

• Policy Decision Point (PDP).

The REA evaluates the roles assigned to an authenticated client. The evaluation process
founds on the Role Enablement Policies defined for the REA's security domain. There are two
predefined roles specified for the PEP.

• guest

• trustedClient

If the client’s authenticity can not be verified, then the REA assigns the predefined guest role
to this request (see clause 2.3.5).
If the provider especially trusts in the reliabity and authentication mechanisms of a client, e.g.
a web portal or a special client application, then he may assign this client the role
trustedClient. This role allows the client to pass the X.509 certificate of the trusted client to
the PEP using the special Http request parameter clientCert.
Parameterised with the evaluated roles for the request, the PDP decides on the further
processing of the request. Requests may be blocked completely or redirected to the protected
BioCASE-provider.
BioCASE-responses returned from the provider are filtered according to the XACML policies
defined using the RoleManager. Within this filtering process, parts of the XML-structure of
the provider's response content may be eliminated in the final response delivered to the PEP
(see clause 4.5). Finally, the PEP embeds the remaining BioCASE- response in a Https-
response and returns the latter to the requesting client.
The configuration details for the PEP describes clause 4.1.2), The PEP may be started using
the distribution’s bash-script PEP or running the Java class nbi.xmlsec.PEP. The command
has no parameters.

4.5 BioCASE Integration
The current implementation of the PEP (PDP) supports the BioCASE protocol version 1.3
[TSL+04]=17 - BioCASE Se... 2005 The BioCASE unit-lev...=]. The integration of the
BioCASE-protocol within the XACML architecture needed some adaptation efforts. Namely,
the BioCASE protocol specifies three commands (capabilities, scan and search), each
requiring a separate processing. A different processing is required for BioCASE request and
responses also. Therefore, some rules must be respected when defining policies using the
RoleManager. Furthermore, some commitments concerning the handling of some protocol
operators must have been taken. Both are subject of the next sections.

4.5.1 Policy Definition Rules
The BioCASE protocol provides three request methods (capabilities, scan and search) and
each requires special processing regarding the PDP's policy evaluation. Additionally, because
requests can only be blocked and responses can only be filtered, the PDP uses two processing
chains for each method - one for requests and one for responses.

4.5.1.1 Request processing
Due to the fact that methods are the active components within a BioCASE-request, the
method names are considered as actions, whereas the path used within the filter element of the
search request and the value of the concept element of the scan request are interpreted as
resources. Regarding the capabilities method, requests can only be permitted or denied based
on the request method. Thus, for the evaluation of requests a Permission’s action target must
be defined using the RoleManager according to the following pattern:
string-equal[<method>-request] where as <method> may be replaced by one

of the strings "capabilities", "scan" or
"search"

Example:
string-equal[search-request] matches a search request
Furthermore, several paths or concepts can be added as resources to a permission for scan or
search requests. During the request evaluation process, the PDP evaluates the defined

PermissionPolicies by looking up for matches between the actual request and the
PermissionPolicies defined with the RoleManager.
As stated above, if the evaluated request type is scan, than the PDP looks for matches within
the value of the concept element of a scan request.
If the request type equals to search, then the path attribute of the filter sub elements of the
search request is evaluated by the PDP.
In both cases, the PDP tries to match string values represented by the concatenation of the
request format and the path or concept value of the request. So, if a scan or search request
permission for the ABCD resource
/DataSets/DataSet/Units/Unit/Identifications/Identification/TaxonIdentified
/NameAuthorYearString shall be defined, then the following string must be added to the
target resources:
http://www.tdwg.org/schemas/abcd/1.2/DataSets/DataSet/Units/Unit/Identifica
tions/Identification/TaxonIdentified/NameAuthorYearString
Currently, you can define the match functions string-equal and string-match only. Future
versions may support XPath expressions also.
Example:
string-equal[http://www.tdwg.org/schemas/abcd/1.2
/DataSets/DataSet/Units/Unit/Identifications/Identifi
cation/TaxonIdentified/NameAuthorYearString]

matches the given
ABCD concept if
equal

string-match[http://www.tdwg.org/schemas/abcd/1.2
/DataSets/DataSet/Units/Unit/Identifications/Identifi
cation]

matches all ABCD sub
concepts of
Identification
(regular expression)

Furthermore, using conditions (see clause 4.3.2.1.4) the evaluation of the following
environment attributes is implemented to be used within BioCASE protocol requests:

Attribute Description
source The source attribute of the header element as

StringAttribute
requestFormat The requestFormat of Scan or Search requests as

AnyUriAttribute
responseFormat The responseFormat of search requests as AnyUriAttribute
start The start attribute of the responseFormat element of search

requests as IntegerAttribute
limit The limit attribute of the responseFormat element of search

requests as IntegerAttribute
count The count attribute of the responseFormat element as

BooleanAttribute

Example:
integer-less-than[env[limit],10]

Evaluates the environment attribute limit
of the responseFormat element limit and
compares it to the integer value 10

4.5.1.2 Response processing
Analogous to the processing of BioCASE-requests, method names are considered as actions
within BioCASE-responses also. But this time, the pattern to be used for the definition of the
action target of Permissions should be defined as follows:
string-equal[<method>-response] where as <method> may be replaced by one

of the strings "capabilities", "scan",
"search" or “sign”.

Example:
string-equal[search-response] matches a search response

When the PDP evaluates the BioCASE-responses, it considers the value of the content
element as XML-document, the namespace of this document and the response format from
the related BioCASE-request. First, the PDP checks the access permissions for every sub
element and attribute of this XML-document. If permission is denied for an element of the
response's content document, access is also denied for any attributes and sub elements of this
element. All elements stated above will be eliminated from the final response to the
requesting client. If permission is denied for an element's attribute, only this attribute will be
eliminated from the final response to the client. Therefore, the PDP also verifies for each sub
element and attribute, if the namespace of the XML-document matches the response format
requested. Thus, unlike the description of request processing above, the permissions for scan
or search responses must define resource target defined using the RoleManager applicating
the following rules:
If search or sign response permission for the ABCD resource
/DataSets/DataSet/Units/Unit/Identifications/Identification/TaxonIdentified
/NameAuthorYearString shall be defined, then the following string must be added to the
target resources:
http://www.tdwg.org/schemas/abcd/1.2/DataSets/DataSet/Units/Unit/Identifica
tions/Identification/TaxonIdentified/NameAuthorYearString
If scan or capabilities response permission shall be defined, then the response format equals
the namespace of the BioCASE- protocol:
http://www.biocase.org/schemas/protocol/1.3
To match the values of a scan response, the following string must be stated in the match
function:
http://www.biocase.org/schemas/protocol/1.3/scan/value
Attributes to be matched shall be given by appending "@" and the attribute name to the
related element path, such as
http://www.tdwg.org/schemas/abcd/1.2/DataSets/DataSet/Units/Unit/Identifica
tions/Identification/TaxonIdentified/NameAuthorYearString@attribute
Currently, you can define the match functions string-equal and string-match only. Future
versions may support XPath expressions also.
Examples:
string-equal[http://www.tdwg.org/schemas/abcd/1.2
/DataSets/DataSet/Units/Unit/Identifications/
Identification/TaxonIdentified/NameAuthorYearStrin
g]

matches the given ABCD
element and all sub
elements if equal.

string-match[http://www.tdwg.org/schemas/abcd/1.2
/*/Identification]

matches all ABCD
Identification sub
concepts within the
response document
(regular expression)

4.5.1.3 Response signing
Response signing is a special part of the response processing. The response signing process
follows the handling of permitted content document elements in the response processing. The
signing process covers element processing only. Attributes can not be subject of the signing
process.
The remaining permitted elements and all of its subelements will be signed, if there is a
permission action target sign-response defined together with a resource target matching the
related element. The matching process corresponds to the matching process for the action
target search-response described above. For that, each matching element was appended to a
list of content document elements to be signed.
At the end of the response processing, the content document will be signed if the list of
signable elements holds at least one element. The signing process is executed along the XML-
Signature standard [ERS02]. The content document will be signed in detached mode, i.e. the

signature element is appended as sibling of the content document within the BioCASE
response. Each element paths in the list of signable elements is included as reference in the
generated XML-Signature.

4.5.1.4 Combining algorithms deny-overrides vs. permit-overrides
Using the RoleManager’s option –d (see clause 4.3.3.1), the combining algorithm of an
XACML PermissionPolicy can be determined. The combining algorithm deny-overrides
determines, if only one Permission within a PermissionPolicy evaluates to deny, then the
result of the whole evaluation is deny. Vice versa, the combining algorithm permit-overrides
determines, if only one Permission within a PermissionPolicy evaluates to permit, then the
result of the whole evaluation is permit.
Note, that the combining algorithm possibly influences the intended effect of the permission
evaluation process. Let's demonstrate the effect on the following simple example.
Say, the following two resources are defined for a search response.
string-match[http://www.tdwg.org/schemas/abcd/1.2
/*]

permit all elements of
an ABCD document

string- equal[http://www.tdwg.org/schemas/abcd/1.2
/DataSets/DataSet/Units/Unit/Identifications] -d

deny all ABCD elements
below
/DataSets/DataSet/Units/
Unit/Identifications

If the combining algorithm is defined to permit-overrides, then the PDP would permit a
request on the resource
http://www.tdwg.org/schemas/abcd/1.2/DataSets/DataSet/Units/Unit/Identifica
tions/Identification/TaxonIdentified/Name.
But if the combining algorithm is defined deny-overrides, the same request would be
evaluated by the PEP to deny.
Nevertheless, the availability of both algorithms provides to determine access policies as
"black lists" or "white list" and may be helpful to save unnecessary typing efforts when
defining permission policies.

4.6 Client API
The client API manages communication with the Policy Enforcement Point (PEP) of a
BioCASE provider. For that, the Java class nbi.xmlsec.PEPClient provides methods to send
and receive BioCASE request and responses from PEPs. Furthermore, these methods hide the
complexity of security related features like client authentication and signature verification for
its users. Additionally, the package nbi.xmlsec.biocase.protocol provides classes to build and
evaluate BioCASE requests and responses to be used in the PEPClient class.
To use client authentication and signature verification easily, the PEPClient should be
configured as described in clause 4.6.1. Client authentication is needed if you send requests to
the PEP. Depending on the client identity, the PEP assigns role based access rights to the
connecting client defined in its policies.
For certain roles, the PEP may be configured to sign the content document within its
BioCASE response using the XML-Signature standard. The PEPClient automatically
recognises signed responses and verifies the signatures and certificate chains using the default
Java built-in standard PKIX[IET05]. The result will be reported in the Diagnostics parts of the
BioCASE response. Therefore, the special value “SECURITY” was introduced, signaling
security related information in the attribute code of the Diagnostic elements in the BioCASE
response.
The client API may also be used in web portals or web interface application servers, which
authenticate client on their own. For that, the PEP may assign a specific role, called
“trustedClient”, to some trustworthy clients. This role allows these clients, after successfully
authenticating themselves to the PEP, to pass the X.509 certificate of their authenticated

clients to the PEP. Then, the PEP handles the related request, as if it would come from the
client identified within the transmitted certificate. The send method of the PEPClient class,
provides an extra parameter to enter the trusted client mode and pass the related client
certificate to the PEP. For that, the send method encodes the certifcate with a
base64URLEncoder and transmits the certificate to the PEP adding the parameter clientCert
of the relating Http request.
In the following sections, the configuration of the PEPClient and a small code example
illustrating the usage of the client API is presented.

4.6.1 Configuration
The configuration of the PEPClient is analogous to the general configuration of the Role
Manager and PEP described in clause 4.1. The configuration consists of the file "config.xml"
specifying the configuration objects to load. We use an XML based configuration object,
which is stored in an XML file to be configured within the attribute "fileName" of the element
"xml" in the config.xml.
<?xml version="1.0" encoding="ISO-8859-1" ?>
<configuration>
 <xml fileName="PEPClientconfig.xml"/>
</configuration>
Currently, there is not DTD or XML schema to describe the format, neither from the
Commons Configuration project, nor from us. So, the relevant parameters will be explained in
the next sections.
The root element is ignored, so the configuration of a component starts with the element
PEPClient, which currently has no attributes.
The subelement PEP configures the URL of the PEP to be used. The usage of SSL
authentication will automatically be recognised, if the protocol https was configured.

/PEPClient/PEP
Attribute Function
url URL of the PEP to communicate with.

Next, the keystore has to be defined, where the PEPClient retrieves the private key and X.509
certificate of the client. The generation of these keys describes clause 4.2. In the
configuration, you have to state the path to the keystore file, the type of the keystore (usually
PKCS12) and the password to open the keystore.
Note: For security reason, make sure that nobody except you can read this configuration file.

/PEPClient/KeyStore
Attribute Function
file Path to the keystore file

type Type of the keystore (e.g. PKCS12, JKS)

password Password of the keystore

A keystore may contain multiple key pairs. So, Key element specifies the alias name of the
key within the keystore and the password of the key.

/PEPClient/Key
Attribute Function
alias Alias name of the key in the keystore

password Password of the key

Finally, to verify the authenticity of the PEP’s certificate and to verify the signature of the
possibly signed content document of the PEP’s BioCASE response, the truststore holds a list
of certificates from trusted certification authorities.

/PEPClient/TrustStore
Attribute Function
file Path to the keystore file

password Password of the keystore

The following lines present an example PEPClient configuration file:
<Configuration>
 <PEPClient>
 <PEP url="https://localhost" />
 <KeyStore file="CA/UserCA/client.p12" type="PKCS12" password="client"
/>
 <Key alias="BioCASE Client 2048 Bit Zertifikat" password="client" />
 <TrustStore file="./jssecacerts" password="provider" />
 </PEPClient>
</Configuration>

4.6.2 Code Example
The following lines present a commented code example illustrating the usage of the client
API. The example describes the creation, sending and receiving of a BioCASE search request.
For a detailed API description, please see the JavaDoc documentation of the distribution.

First, we create a request and a header for the BioCASE protocol version 1.3.
Request request = new Request(ProtocolFilter.PROT_URI_13);
Header requestHeader = new Header(ProtocolFilter.PROT_URI_13);
We want to send a search request, so let’s set the header’s Type and assign the header to the
request.
requestHeader.setType("search");
request.setHeader(requestHeader);
Now we create specify the operation type (also for BioCASE V1.3)
SearchOperationType requestSearchOp = new
SearchOperationType(ProtocolFilter.PROT_URI_13);
We request an ABCD document V1.2.
requestSearchOp.setRequestFormat("http://www.tdwg.org/schemas/abcd/1.2");
requestSearchOp.setResponseFormat("http://www.tdwg.org/schemas/abcd/1.2");
We set the responseFormat attributes start, limit and count..
requestSearchOp.setResponseFormatStart(new Integer(0));
requestSearchOp.setResponseFormatLimit(new Integer(10));
requestSearchOp.setCount(Boolean.FALSE);
We want to search for all database entries for Luzula acerifolium subsp.
Arbiales in Germany. So, we filter the results of the comparativ operator
like for the CountryName and the comparativ operator equals for the
NameYearAuthorString element using the logical operator and.
LOP andOp = new LOP(ProtocolFilter.PROT_URI_13, LOPFilter.LN_AND);
COP likeOp = new COP(ProtocolFilter.PROT_URI_13, COPFilter.LN_LIKE);
likeOp.setPath("/DataSets/DataSet/Units/Unit/Gathering/GatheringSite/Countr
y/CountryName");
likeOp.setValue("Ger*");
COP equalsOp = new COP(ProtocolFilter.PROT_URI_13, COPFilter.LN_EQUALS);
equalsOp.setPath("/DataSets/DataSet/Units/Unit/Identifications/Identificati
on/TaxonIdentified/NameAuthorYearString");
equalsOp.setValue("Luzula acerifolium subsp. arbiales");
andOp.addOperator(likeOp);
andOp.addOperator(equalsOp);
Set filter of the Operation type and assign the operation type to the request.

requestSearchOp.setFilter(andOp);
request.setOpType(requestSearchOp);
Now, set up the PEPClient using the configuration file.
ConfigurationFactory factory = new ConfigurationFactory("config.xml");
Configuration config = factory.getConfiguration();
PEPClient pepclt = new PEPClient(config);
Send the request in normal mode
pepclt.send(request, wrapperDatabase, true,null);
Send the request in trustedClient mode
X509 Certificate cert = getClientCertificate()
pepclt.send(request, wrapperDatabase, true, cert);
Get the response
Response response = pepclt.getResponse();

To read the client certificate from a keystore, the following function may be helpful.
X509Certificate getClientCertificate(String clientKeyStore, String type,
String passwd, String keyAlias)
{
 X509Certificate result = null;
 try {
 KeyStore keystore = KeyStore.getInstance(type);
 keystore.load(new FileInputStream(clientKeyStore),
passwd.toCharArray());
 result = (X509Certificate) keystore.getCertificate(keyAlias);
 } catch (Exception e) {
 logger.fatal(e.getMessage());
 }
 return result;
}

5 Installation
The following section provides a small guide through the installation process of the software
distribution and some third party products required to run the PEP and RoleManager. The
guide includes the following aspects:

• Web Browser X.509 Certificate Installation

• OpenSSL

• BioCASE provider

• Access control software distribution

Finally, the example scenario also included in the software distribution is described. It may be
helpful testing the correct installation of all required software components.

5.1 Browser Certificate Installation
To install the web browser, please refer to the installation instructions of your favourite
browser. As an example, the installation of the X.509 certificates for clients is described
within the following sections for the popular web browsers

• Mozilla Firefox

• Microsoft Internet Explorer

5.1.1 Firefox
To install the user certificates, open FireFox's certificate manager following the menu entry
Tools/Options/Advanced/Certificates and pushing the button "Manage Certificates". Click on

the tab "Your Certificates" and then on the button "Import". Now, choose the certificates files
to install. Example user certificates for the users nobody, client and expert can be found in the
unzipped distribution subdirectory Keys/UserCA. The have the suffix ".p12" and are
PKCS#12-files. The passwords for this example files equals to their user names(e.g. expert).
To install the certificate of the RootCA, import the file Keys/RootCA/RootCA.crt from the
distribution under the tab "Authorities". To install the certificate of the ServerCA, use the file
Keys/ServerCA/ServerCA.crt under the tab "Web Sites".

5.1.2 Internet Explorer
To install the user certificates, open Internet Explorer's Certificates dialog following the menu
entry Tools/Internet Option and pushing the button "Certificates". Next, click on the tab
"Personal" and then the button "Import". Now, choose the certificates files to install. Example
user certificates for the users nobody, client and expert can be found in the unzipped
distribution subdirectory Keys/UserCA. The have the suffix ".p12" and are PKCS#12-files.
The passwords for this example files equals to their user names(e.g. expert).
To install the certificate of the RootCA, import the file Keys/RootCA/RootCA.crt from the
distribution under the tab "Trusted Root Certification Authorities". To install the certificate of
the ServerCA, use the file Keys/ServerCA/ServerCA.crt under the tab "Intermediate
Certification Authorities".

5.2 OpenSSL
For OpenSSL installation instructions please refer to [THE05b].
To build up a PKI and generate keys and certificates for client and servers refer to clause 4.2.

5.3 BioCASE Provider
The BioCASE provider software version 2.31 should be available from the BioCASE
Secretariat [BIO05]. A detailed installation instruction is provided on [ASA+02].

5.4 Software distribution
To install the software distribution, unzip the content of the zip-file in a suitable system
directory. Ensure that no unauthorized users have access to that directory.
The distribution contains an Ant-file (build.xml). The second line of the build.xml defines the
property "dir.jdk". Please modify the value of this property, so that it points to the directory,
where the Java Development Kit to be used for the software is installed. Then, using the ant
target install, ant installs the required files for the Java environment automatically (ant
install).
If automatic installation does not work, then execute the following instruction to install the
software manually. Using the JDK's (J2SE 1.4.2) default installation, Java should be located
in the directory "C:\Program Files\Java\j2re1.4.2_xx". Please copy the files of the
subdirectory j2sdk1.4.2/jre/lib/security of the unzipped distribution zip-file to the directory
"C:\Program Files\Java\j2re1.4.2_xx\lib\security". If the JDK 1.4.2 is installed into another,
non default location, then the files must be copied in the subdirectory jre/lib/security of the
JDK's home dir.
The installation copies the Java Cryptography Extension (JCE) Unlimited Strength
Jurisdiction Policy Files 1.4.2 (see 3.1) and configures Bouncy Castle as JCE Provider within
this Java VM. Furthermore, the file jssecacerts file contains the certificates of the example
PKI’s RootCA and UserCA. This file is expected there by the Java Secure Socket Library
(JSSE) [PJR+05] (see also clause 4.2.17) .
Finally install the example keys certificates in your browser as described in clause 5.1.

Before starting the PEP, adopt the host and port of the PEP within the Listener configuration
and the URLs of the BioCASE provider application interface and the PyWrapper (see 4.1.2).
The latter must be set to the URL of the PEP, as it must be reachable from the BioCASE
provider domain. The distribution includes an example scenario and configuration files,
assuming that a BioCASE provider is installed locally (see clause 5.5). Please try this default
configuration first, before setting up complex scenarios.
Next, to run the scenario with a locally installed BioCASE provider running on
http://localhost:8080, you can use the predefined values in the default configuration files (see
clause 4.1.2), such as
<Listener class="org.mortbay.http.SslListener" host="localhost" port="443">
to configure the Listener listening on the https port 443,
<Proxy url="http://localhost:8080" /> and
<Wrapper url="https://localhost" />
to configure the Handler redirecting the PyWrapper through the PEP.
There are two possibilities to start the PEP, first using the ant task run ("ant run") using the
distributions build.xml file, second, using the distribution’s bash-script PEP. Both try to
evaluate the current installation path of the JDK 1.4.2 using the JAVA_HOME environment
variable. If not, please adopt the property dir.jdk (ant), or the PATH and JAVA_HOME
export variables (bash) in the file java-classpath respectively. The latter is also included in the
start scripts RoleManager and provider-setup, to start the RoleManager or reset the example
policies (see clause 5.5).
Assuming that the path, where the provider software application interface is installed on the
web server equals to "/biocase" and the provider software is running locally, use the web
browser where you imported at least one of the client certificates, and browse to the URL
"https://localhost/biocase". If you have more than one client certificate installed, you may be
prompted to select one of them. Furthermore, you should be prompted to accept the PEP's
example server certificate. Next, you should see the starting page of the BioCASE provider
application interface and may start to use it as usual. Depending on the selected user identity,
especially for the users nobody and client you should consider the restrictions imposed by the
example scenario, as described in clause 5.5.
If you like to use the client API, just include the .jar libraries of the distribution’s subdirectory
lib in your Java classpath. The xmlsec.jar contains the compiled classes of all software
components. Configure the PEPClient according to your needs (see clause 4.6.1). To test the
client API against the example scenario, use the client.p12 or expert.p12 Keystore from the
CA-subdirectory of the distribtion. Don’t forget to configure the truststore file “jssecacerts” or
copy it to the subdirectory jre/lib/security of your JDK's home directory.

5.5 Example scenario
The distribution provides an example scenario based on the BioCASE provider software 2.31
and supporting the BioCASE protocol version 1.2. The example scenario defines the roles
guest, client and expert within the domain biocase and assigns these roles to the users nobody,
client and expert respectively. The role guest is also assigned, when an unauthenticated
request was received by the PEP.
The role guest is restricted to the concepts defined as "required" within the ABCD schema
version 1.2, such as

/DataSets
/DataSets/DataSet
/DataSets/DataSet/OriginalSource
/DataSets/DataSet/OriginalSource/SourceInstitutionCode
/DataSets/DataSet/OriginalSource/SourceName
/DataSets/DataSet/OriginalSource/SourceLastUpdatedDate
/DataSets/DataSet/DatasetDerivations
/DataSets/DataSet/DatasetDerivations/DatasetDerivation
/DataSets/DataSet/DatasetDerivations/DatasetDerivation/DateSupplied
/DataSets/DataSet/DatasetDerivations/DatasetDerivation/Supplier
/DataSets/DataSet/Units
/DataSets/DataSet/Units/Unit
/DataSets/DataSet/Units/Unit/UnitID

Also, the role guest is restricted to the concepts defined as "required" within the ABCD
schema version 2.06, such as

/DataSets
/DataSets/DataSet
/DataSets/DataSet/TechnicalContacts
/DataSets/DataSet/TechnicalContacts/TechnicalContact/
/DataSets/DataSet/TechnicalContacts/TechnicalContact/Name
/DataSets/DataSet/ContentContacts
/DataSets/DataSet/ContentContacts/ContentContact/
/DataSets/DataSet/ContentContacts/ContentContact/Name
/DataSets/DataSet/MetaData
/DataSets/DataSet/MetaData/Description/
/DataSets/DataSet/MetaData/Description/Representation/
/DataSets/DataSet/MetaData/Description/Representation/Title
/DataSets/DataSet/MetaData/RevisionData/
/DataSets/DataSet/MetaData/RevisionData/DateModified
/DataSets/DataSet/Units
/DataSets/DataSet/Units/Unit/
/DataSets/DataSet/Units/Unit/SourceInstitutionID
/DataSets/DataSet/Units/Unit/SourceID
/DataSets/DataSet/Units/Unit/UnitID

All scan or search requests are denied, which are not covered by the above list. Furthermore,
all ABCD elements of the BioCASE response content are eliminated by the PEP, when not
part of this list. All capabilities requests and responses are permitted. Finally, search requests
are limited to 5 hits (reponseFormat attribute limit <= 5).
Using the client role, only those scan and search requests concepts and response content
elements are denied or eliminated, when they include ABCD locality information or images,
such as (ABCD 1.20)

/DataSets/DataSet/Units/Unit/UnitDigitalImages
/DataSets/DataSet/Units/Unit/Gathering/GatheringSite

or (ABCD 2.06)

/DataSets/DataSet/Units/Unit/MultiMediaObjects
/DataSets/DataSet/Units/Unit/Gathering/SiteCoordinateSets
/DataSets/DataSet/Units/Unit/Gathering/SiteImages

Finally, search requests are limited to 100 hits (reponseFormat attribute limit <= 5), which is
the default value of the PyWrapper configuration.
Using the expert role, unlimited access is granted to any request. Additionally, the following
elements of a response content ABCD-document are signed (ABCD 1.20):

/DataSets/DataSet/OriginalSource/Source
/DataSets/DataSet/DatasetDerivations/DatasetDerivation/DateSupplied
/DataSets/DataSet/DatasetDerivations/DatasetDerivation/Supplier
/DataSets/DataSet/Units/Unit/UnitID

and for ABCD 2.06:

/DataSets/DataSet/Metadata]
/DataSets/DataSet/Units

The bash script provider-setup resets this scenario whenever needed. This script is a good and
commented example source, how to call the RoleManager to assign users to roles and how to
specify permissions and assign them to the permission policies of a given role. Feel free to use
this as a basis for your own experiments defining access control policies for your own PEP
configuration (see clause 4.1.2).
This example scenario presumes that the BioCASE provider is running locally on port 8080,
i.e. under the URL http://localhost:8080/ biocase. If not, modify the related values in the
configuration files as described in clause 4.1.

6 Developer Documentation
The software distribution described was implemented in Java. The preferred documentation
scheme for Java developers is the maintenance of JavaDoc entries in the source code. From
these JavaDoc tags, the documentation needed by Java developers may be generated using the
javadoc tool of the J2SE.
The software distribution includes the generated HTML-JavaDoc documentation for all
implemented classes in the subdirectory doc/javadoc. It may also be reconstructed using the
ant task javadoc (ant javadoc) in the distributions directory.

7 References

[A05] ANDERSON, ANNE: Core and hierarchical role based access control (RBAC)

profile of XACML v2.0, 2005.
[APA05] APACHE SOFTWARE FOUNDATION: Log4j project, 2005.
[ASA+02] ARUMUGAM, M. ET AL.: Towards Peer-to-Peer Semantic Web: A Distributed

Environment for Sharing Semantic Knowledge on the Web, Hawai: 2002.
[BIO05] BIOCASE SECRETARIAT: A Biological Collection Access Service for Europe,

2005.
[DFN00] DFN-PCA: Das OpenSSL Handbuch, Hamburg: 2000.
[ECL05] ECLIPSE FOUNDATION: Eclipse.org, 2005.
[ERS02] EASTLAKE, DONALD; REAGLE, JOSEPH; SOLO, DAVID: XML-Signature Syntax

and Processing, 2002.
[HM04] HUGHES, JOHN; MALER, EVE: Technical Overview of the OASIS Security

Assertion Markup Language (SAML) V1.1, 2004.
[IET05] IETF SECRETARIAT: Public-Key Infrastructure (X.509) (pkix), 2005.
[MOR05] MORTBAY CONSULTING: Jetty Java HTTP Servlet Server, 2005.
[MOS05] MOSES, TIM: eXtensible Access Control Markup Language (XACML) Version

2.0, 2005.
[MOZ05] MOZILLA.ORG: Firefox, 2005.
[PJR+05] PERRY, M. ET AL.: Peer-to-Peer Discovery of Semantic Associations. (2005)
[RED05] RED HAT INC.: Cygwin Information and Installation, 2005.
[SS04] SCHNEIER, BRUCE; SHAFIR, ANGELIKA: Secrets und lies, Heidelberg: dpunkt-

Verl, 2004. - 3898643026 (dpunkt-Verl. : kart.); ; 3527501282 (Wiley : kart.)
[SUN04a] SUN MICROSYSTEMS INC.: Sun's XACML Implementation, 2004. (a)
[SUN04b] SUN MICROSYSTEMS: JSR-000105 XML Digital Signature APIs, 2004. (b)
[SUN05] SUN MICROSYSTEMS INC.: Java 2 Platform, Standard Edition (J2SE), 2005.
[TAU05] TAU CETI CO-OPERATIVE LTD.: The Legion of the Bouncy Castle, 2005.
[THE05a] THE APACHE SOFTWARE FOUNDATION: The Apache Jakarta Project, 2005. (a)
[THE05b] THE OPENSSL PROJECT: OpenSSL, 2005. (b)
[THE05c] THE APACHE SOFTWARE FOUNDATION: The Apache Ant Project, 2005. (c)
[TSL+04] TOLKSDORF, ROBERT ET AL.: SYNTHESYS D 1.2 Develop authentication

services for system access, Berlin: 2004.

	Preface
	2 System Architecture
	2.1 Application interface scenario
	2.2 Client API scenario
	2.3 Components
	2.3.1 BioCASE Provider
	2.3.2 Browser
	2.3.3 Trust Center
	2.3.3.1 Public Key Infrastructure

	2.3.4 RoleManager
	2.3.5 Policy Enforcement Point
	2.3.6 Client API

	3 System Requirements
	3.1 Java Platform
	3.1.1 OpenSSL
	3.1.2 Cygwin
	3.1.3 Ant
	3.1.4 BioCASE Provider
	3.1.5 Web Browser

	4 User Documentation
	4.1 Configuration (general)
	4.1.1 RoleManager
	4.1.2 PolicyEnforcementPoint
	4.1.2.1 Context Path
	4.1.2.2 Listener
	4.1.2.3 Handler
	4.1.2.4 Example
	4.1.2.5 Policy Management
	4.1.2.5.1 PolicyManager
	4.1.2.5.2 PolicyFinder
	4.1.2.5.3 FileFilter
	4.1.2.5.4 Example

	4.2 Public Key infrastructure
	4.2.1 Create the directory structure
	4.2.2 Adopt openssl.cnf
	4.2.3 Generate the Private key of the RootCA:
	4.2.4 Generate the RootCA's certificate
	4.2.5 Verify the certificate
	4.2.6 Copy the certificate to the place configured within openssl.cnf
	4.2.7 Link the RootCA's certificate within the directory structure configured in openssl.cnf
	4.2.8 Generate the ServerCA and UserCA and generate the Private Key for the Server CA
	4.2.9 Generate the certificate request (to be signed from the RootCA later)
	4.2.10 Sign the certificate request
	4.2.11 Copy the ServerCA certificate to the place configured within openssl.cnf
	4.2.12 Repeat the last steps to create the UserCA
	4.2.13 Create Browser compatible certificate files
	4.2.14 Generation of a server certificate
	4.2.15 Generation of a user certificate
	4.2.16 Export keys and certificates to the PKCS#12 format
	4.2.17 Configuration of the JSSE trust manager

	4.3 RoleManager
	4.3.1 Policy management
	4.3.1.1 Domains
	4.3.1.2 Identifier
	4.3.1.3 RoleAssignmentPolicy(Set)
	4.3.1.4 RolePolicySet
	4.3.1.5 PermissionPolicySet
	4.3.1.6 PermissionPolicy

	4.3.2 Commands
	4.3.2.1 Add (-a, --add)
	4.3.2.1.1 Add users to a role
	4.3.2.1.2 Add PermissionPolicies to a role
	4.3.2.1.3 Add Permissions to a PermissionPolicy
	4.3.2.1.4 Add Conditions to Permissions

	4.3.2.2 Remove (-r, --remove)
	4.3.2.2.1 Remove users from a role
	4.3.2.2.2 Remove PermissionPolicies from a role
	4.3.2.2.3 Remove Permissions from a PermissionPolicy
	4.3.2.2.4 Remove Conditions from a Permission
	4.3.2.2.5 Remove roles completely
	4.3.2.2.6 Remove domains completely

	4.3.2.3 List (-l, --list)
	4.3.2.4 Help (-h, --help)

	4.3.3 Options
	4.3.3.1 Deny (-d, --Deny)
	4.3.3.2 Domain (-D, --Domain <label list>)
	4.3.3.3 User (-U,--User <cert file list>)
	4.3.3.4 targetAction (-z,--targetAction <datatype- matchfunc[value]>)
	4.3.3.5 targetResource (-y,--targetResource <datatype- matchfunc[value]>)
	4.3.3.6 Role (-R,--Role <label list>)
	4.3.3.7 PermissionPolicy (-P,--PermissionPolicy <label list>)
	4.3.3.8 -p,--Permission <list of labels>
	4.3.3.9 -C,--Condition <list of labels>
	4.3.3.10 --policyBaseDir

	4.3.4 Target syntax scheme description
	4.3.4.1 Example

	4.3.5 Condition syntax scheme description
	4.3.5.1 Example

	4.4 Policy Enforcement Point
	4.5 BioCASE Integration
	4.5.1 Policy Definition Rules
	4.5.1.1 Request processing
	4.5.1.2 Response processing
	4.5.1.3 Response signing
	4.5.1.4 Combining algorithms deny-overrides vs. permit-overrides

	4.6 Client API
	4.6.1 Configuration
	4.6.2 Code Example

	5 Installation
	5.1 Browser Certificate Installation
	5.1.1 Firefox
	5.1.2 Internet Explorer

	5.2 OpenSSL
	5.3 BioCASE Provider
	5.4 Software distribution
	5.5 Example scenario

	6 Developer Documentation
	7 References

